The Partial Oxidation of Propane under Mild Aqueous Conditions with H₂O₂ and ZSM-5 Catalysts. Supporting Information

Virginie Peneau^a, Greg Shaw^a, Robert D. Armstrong^a, Robert L. Jenkins^a, Nikolaos Dimitratos^a, Stuart

H. Taylor^a, Horst W. Zanthoff^b, Stefan Peitz^b, Guido Stochniol^b, and Graham J. Hutchings*^a

^aCardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place,

Cardiff, CF10 3AT, United Kingdom. Tel: +44 (0) 2920874059, Fax: +44(0) 2090874 030

^b Evonik Industries AG, 45764 Marl, Germany

*Corresponding author: <u>Hutch@cf.ac.uk</u>

Figure S1 A typical solvent- suppressed ¹H-NMR spectrum for propane oxidation reactions, with assignment of resonances used in product quantification.

Figure S2 The solubility of propane in water as a function of $P(C_3H_8)$ and temperature as calculated using Henry's Law. * Propane solubility under standard conditions $P(C_3H_8) = 4$ bar and 50 °C.

Figure S3 Arrhenius plot for data in Figure 8

Figure S4 – Effect of conversion on C3 products selectivity. n-Propanol (\square), isopropanol (\blacksquare), acetone (•), propene (•) and propanoic acid (\square)

Figure S5 – Effect of conversion on C2 products selectivity. Ethanol (\square), Ethane (\blacksquare), Ethene (\blacklozenge) and Acetic acid (\square)

Figure S6 – Effect of conversion on C1 products selectivity. Formic acid (\square), methane (\blacksquare), methanol (\bullet), CO (\bullet) and CO₂ (\square)

Figure S7 – Effect of conversion on H_2O_2 conversion. Catalyst mass study (•), reaction time study

Table S1 A comparison of the catalytic performance of H-ZSM-5 (30) and 2.5 % Cu/ZSM-5 (30) (CVI) under standard propane oxidation reaction

Catalyst	Propane conversion / %	H ₂ O ₂ / Conversion / %	Product Selectivities / %													
			C3 Products					C ₂ Products				C ₁ Products				
			Acetone	<i>i-</i> PrOH	<i>n</i> - PrOH	Propanoic Acid	C_3H_6	EtOH	Acetic Acid	C_2H_4	C_2H_6	MeOH	Formic Acid	CH ₄	CO ₂	
H-ZSM-5 (30)	0.90	5.0	7.6	8.4	18.2	11.7	2.5	7.7	6.2	0.4	6.1	0.9	28.1	1.3	0.8	
2.5 % Cu/ZSM-5 (30)	0.36	5.4	9.3	19.8	18.8	3.2	20.8	1.4	1.0	2.1	12.6	2.5	4.0	3.2	1.2	

conditions.

Reaction conditions for Entry 1: Propane (4000 μ mol), [H₂O₂] = 0.5 M (5000 μ mol), 27 mg catalyst, 50 °C, 0.5 h, 1500 rpm.