Supporting Information

Visible-light-mediated, simple copper(I)-chloride catalysed efficient C_{sp} - C_{sp} homocoupling of terminal alkynes at room temperature

Arunachalam Sagadevan, Vaibhav Pramod Charpe and Kuo Chu Hwang*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R. O. C. E-mail: <u>kchwang@mx.nthu.edu.tw</u>

Table of contents

Experimental section		
Evaluation of Green metrics of the process	S3	
EPR spectrum of superoxide radical anion	S 6	
FT-IR-spectra of in-situ generated copper(I) phenylacetylide	S 7	
¹ H NMR, ¹³ C NMR and HR-MS data	S 8	
¹ H NMR and ¹³ C NMR spectra	S18	

Experimental section

General: All reactions were conducted under an oxygen atmosphere and oven-dried glass wares were used. All reactions were conducted using a blue light-emitting diode (LED) as the visible-light source (30 lamps, power density: 40 mW/cm² at 460 nm). All solvents were dried according to known methods and distilled prior to use. Starting materials (including starting materials for synthesis of epoxide hydrolase inhibitors) were commercially available (Sigma-Aldrich or Alfa-Aesar or TCI-chemicals) and used as received. NMR spectra were recorded ¹H NMR at 400 MHz/ ¹³C NMR at 100 MHz using deuterated CDCl₃. Chemical shifts (δ) were reported as parts per million (ppm) and the following abbreviations were used to identify the multiplicities: s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet, b= broad and all combinations thereof can be explained by their integral parts. Unless otherwise specified, the proton/carbon signal of 2 residual solvent (at δ 7.24 and δ 77.00 ppm, respectively) was used as the internal reference.

General procedure:

A dry test tube (20 mL) with rubber septum and magnetic stirrer bar was charged with terminal alkynes (1mmol) and 5 mol% CuCl in CH₃CN (1 mL). The mixture was fixed with blue LEDs (the temperature reaches between 25-30 °C when doing irradiation in blue-LEDs) under oxygen atmosphere and continued for the irradiation until completion of homocoupling reaction (it was determined by thin layer chromatography). The reaction mixture was diluted with 40 % ethyl acetate in hexane and stirred in for 10 min. The mixture was filtered through celite and silica gel pads and washed with ethyl acetate. The filtrate was concentrated and the residue was purified by flash column chromatography on silica gel (using n-hexane and ethyl acetate as eluent) to afford desired homocoupling product. The ratio of n-hexane and ethyl acetate varies depending on the polarity of the terminal alkynes used for the formation of homocoupling product. For example, product **(2a)** 1,4-diphenylbuta-1,3-diyne is a non-polar and can be eluted out by using only n-hexane, whereas product like **(2q)** 3,3'-(buta-1,3-diyne-1,4-diyl) dibenzonitrile is quite polar and could be eluted out by using n-hexane and ethyl acetate in the ratio 10:1.

Procedure for the preparation of Phenylacetylene-d₁: ^{s1}

A dry round bottom flask (100 mL) with rubber septum and magnetic stirrer bar was charged with phenyl acetylene (1g) and THF (5-7 mL) and then reaction mixture temperature was the lower down to -78 °C by using ethanol and liquid nitrogen. To this above mixture, n-butyllithium solution (15% hexane) (1.5 eqv.) was added and reaction temperature was maintained -78 °C for 45 min. and then when reaction temperature was about 10-15 °C at that time D₂O was added and reaction was continued for 4 h. Product was separated by layer separation using ethyl ether. Product was characterized by ¹H, ¹³C NMR^{S2} and HR-MS.

Evaluation of Green metrics of the process;

Atom economy defined as "how much of the reactants remain in the final desired product"

Atom economy (AE) = Molecular mass of desired product Molecular mass of all reactants X 100

Reaction mass efficiency (RME) defined as "the percentage of the mass of the reactants that remain in the product"

Reaction mass efficiency = (RME) mass of all reactants X 100

a) Scheme S1: Evaluation of Green metrics of the current photochemical process

Total= 146+146+16 = 308

Reactant	5-ethynylbenzo[d][1,3]dioxole (1g)	1.022g	0.007m ol	FW 146.03
Solvent	ACN	10g		
Auxiliary				
Product	1,4-bis(benzo[d][1,3]dioxol-5- yl)buta-1,3-diyne (2g)	1.78g	0.006m ol	FW 290.05

Product yield= 88%

E-factor	=	1.022g + 1.022g +10.0 g - 1.78g	= 5.76kg waste/ 1 kg product	
2 100001		1.78 g		
Atom economy	=	<u> </u>	= 94%	
Atom efficiency	=	88% X 94% / 100	= 82%	
Carbon efficiency	= -	<u> </u>	= 100%	
Reaction mass efficiency	= _	<u> </u>	= 87%	

Calculation of TOF (our process):

Reaction condition: 5 mol% CuCl, CH₃CN solvent at room temperature (in a gram scale) Product yield= 88%

TON= moles of terminal alkynes (1g)/moles of CuCl-catalyst

= 0.007 moles/0.00035

= 20

Actual TON= 20 x 0.88 = **17.6**

TOF= 17.6 turnover/10 h (time)

$$= 1.76 \text{ h}^{-1}$$

Reaction condition: 5 mol% CuCl, CH₃CN solvent at room temperature

Product yield= 98%

TON= moles of terminal alkynes /moles of CuCl-catalyst

= 1 mole/0.05

= 20
Actual TON= 20 X 0.98 = 19.6
TOF= 19.6 turnover/7h (time)
=
$$2.8 h^{-1}$$

Calculation of TOF (reported thermal process):^{S3}

Reaction condition: 5 mol% CuCl, DMSO solvent at 90 °C

Product yield= **96%**

TON= moles of terminal alkynes (1g)/moles of CuCl-catalyst

= 0.001 moles/0.00005 = **20** Actual TON= 20 X 0.96 = **19.2** TOF= 19.2 turnover/7 h (time)

Scheme S2: Isotope labeling experiment

the experiment with phenylacetylene-d₁ as starting material instead of phenylacetylene (**1a**), this result furnished the homocoupling product (1,3-diynes) in 73% yield after 7 h irradiation under standard condition (see in table 1, entry 18). Also, the experiment with phenylacetylene and phenylacetylene-d₁, where the reaction mixture was irradiated only for 4 h. These reactions of phenylacetylene-H and phenylacetylene-d₁ resulted in 81% and 66% yields, respectively. Based on these above results, the kinetic isotopic effect (KIE= K_H/K_D) was found to be [81/66 + 98/73]/2= 1.3.

Entry	Reaction time (hr)	%Yield Phenylacetylene	%Yield Phenylacetylene-D1
1.	4	81	66
2.	7	98	73

Table S1

EPR spectra of the reaction mixture after blue LEDs irradiation

Figure S1. EPR spectra of the reaction mixture: phenylacetylene(**1a**) (0.6 M), and 5 mol% of CuCl in CH₃CN, 0.5 mL of this reaction solution was taken out into a small vial, followed by the addition of 0.01 ml of DMPO (5 x 10^{-2} M). The mixture was irradiated with blue LEDs at room temperature under an oxygen

atmosphere (1 atm) for 30 minutes. The reaction mixture was then analysed by EPR spectra. There are classical 6 peaks, the signals corresponding to (DMPO-OO(H)).

Figure S2. FT-IR-spectra of in-situ generated copper(I) phenylacetylide. IR (KBr, cm⁻¹): 3050 (aromatic C-H stretching), 1930 (C≡C-Cu^I), 1596 and 1568 (aromatic C=C stretching).

References:

S1: J.J Eisch, Wei Liu, L.Zhu, A.L. Rheingold, Eur. J. Org. Chem. 2015, 7384.

- **S2:** Chem. Commun., 2016, 52, 4509--4512
- **S3:** K. Yin, C. Li, J. Li, X. Jia, Green Chem., 2011, **13**, 591

Spectroscopic Data:

1, 4-diphenylbuta-1,3-diyne (2a)

White solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.53-7.50 (m, 4 H), 7.36-7.30 (m, 6 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 132.4, 129.1, 128.4, 121.7, 81.5 and 73.8; **HRMS** calcd for C₁₆ H₁₀: 202.078, found: 202.075.

4,4'-(buta-1,3-diyne-1,4-diyl)bis(N,N-dimethylaniline) (2b)

Pale orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J*= 8.0 Hz, 4 H), 6.59 (d, *J*= 8.0 Hz, 4 H), 2.96 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 133.6, 111.6, 108.6, 82.3, 72.6 and 40.1; HRMS calcd for C₂₀ H₂₀ N₂: 288.163, found: 288.162.

1,4-bis(4-methoxyphenyl)buta-1,3-diyne (2c)

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J*= 8.0 Hz, 4 H), 6.83 (d, *J*= 8.0 Hz, 4 H), 3.80 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 160.2, 134.0, 114.1, 113.9, 81.2, 72.9, 55.3 and 29.6; HRMS calcd for C₁₈ H₁₄ O₂: 262.099, found: 262.099.

1,4-bis(4-(tert-butyl)phenyl)buta-1,3-diyne (2d)

White solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.44 (d, *J*=8.0 Hz, 4 H), 7.33 (d, *J*=8.0 Hz, 4 H), 1.29 (s, 18 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 152.5, 132.2, 125.4, 118.8, 81.4, 73.4, 34.8 and 31.0; **HRMS** calcd for C₂₄ H₂₆: 314.203, found: 314.202.

1,4-bis(4-butylphenyl)buta-1,3-diyne (2e)

White solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.42 (d, *J*=4.0 Hz, 4 H), 7.13 (d, *J*=4.0 Hz, 4 H), 2.6 (t, *J*=4.0 Hz, 4 H), 1.60-1.54 (m, 4 H), 1.35-1.32 (m, 4 H), 0.91 (t, *J*=4.0 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 132.3, 128.5, 118.9, 81.5, 73.4, 35.6, 33.2, 22.2 and 13.8; **HRMS** calcd for C₂₄ H₂₆: 314.2035, found: 314.2031

1,4-bis(4-ethylphenyl)buta-1,3-diyne (2f)

Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J*=8.0 Hz, 4 H), 7.16 (d, *J*=8.0 Hz, 4 H), 2.65 (q, *J*=8.0 Hz, 4 H) 1.23 (t, *J*=8.0 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 132.4, 127.9, 118.9, 81.5, 73.4, 28.8 and 15.2; HRMS calcd for C₂₀ H₁₈: 258.141, found: 258.140.

1,4-bis(benzo[d][1,3]dioxol-5-yl)buta-1,3-diyne (2g)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.04 (d, *J*=8.0 Hz, 2 H), 6.91 (s, 2 H), 6.74 (d, *J*=8.0 Hz, 2 H), 5.97 (s, 4 H); ¹³**C** NMR (100 MHz, CDCl₃): δ 148.7, 147.4, 127.6, 114.9, 112.0, 108.6, 101.4, 81.2, and 72.5; **HRMS** calcd for C₁₈ H₁₀ O₄: 290.0579 found: 290.0581

1,4-di(naphthalen-2-yl)buta-1,3-diyne (2h)

Pale white solid; ¹H NMR (400 MHz, CDCl₃): δ 8.07 (s, 2 H), 7.82-7.78 (m, 6 H), 7.56-7.49 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 133.1, 133.0, 132.8, 128.4, 128.1, 127.8, 127.2, 126.7, 119.0, 82.2, 74.3 and 29.6; HRMS calcd C₂₄ H_{14:} 302.110, found: 302.109.

1,4-bis(4-fluorophenyl)buta-1,3-diyne (2i)

Pale yellow oil; ¹**H NMR** (400 MHz, CDCl₃): δ 7.53-7.47 (m, 4 H), 7.03-6.99 (m, 4 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 164.3, 161.8, 134.5, 134.4, 116.0, 115.7, 80.4 and 73.5; **HRMS** calcd for C₁₆H₈F₂: 238.059, found: 238.059.

1,4-bis(4-bromophenyl)buta-1,3-diyne (2j)

White Solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.46 (d, *J*=4.0 Hz, 4 H), 7.36 (d, *J*=4.0 Hz, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 133.8, 131.8, 123.9, 120.7, 81.0 and 74.9; **HRMS** calcd for C₁₆ H₈ Br₂: 357.899, found: 357.900.

1,4-bis(4-iodophenyl)buta-1,3-diyne (2k)

White Solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.67 (d, *J*=4.0 Hz, 4 H), 7.22 (d, *J*=4.0 Hz, 4 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 137.7, 133.8, 121.28, 94.3, 81.3 and 75.2; **HRMS** calcd for C₁₆H₈I₂: 453.8715, found: 453.8710.

1,4-bis(2-bromophenyl)buta-1,3-diyne (2l)

Yellow solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.59-7.54 (m, 2 H), 7.29-7.18 (m, 6 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 134.5, 132.5, 130.3, 127.0, 126.1, 124.0, 81.0 and 76.6; **HRMS** calcd for C₁₆ H₈ Br₂: 357.899, found: 357.900.

1,4-bis(3,5-difluorophenyl)buta-1,3-diyne (2m)

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.04-7.01 (m, 2 H), 6.87-6.82 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 163.8, 161.5, 161.3, 124.0, 123.9, 123.8, 115.6, 115.4, 106.2, 106.0, 105.7, 80.0 and 75.0; HRMS calcd for C₁₆H₆F₄: 274.041, found: 274.040.

1,1'-(buta-1,3-diyne-1,4-diylbis(4,1-phenylene))diethanone (2n)

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.91-7.89 (d, *J*= 8.0 Hz, 4 H), 7.59-7.57 (d, *J*= 8.0 Hz, 4 H), 2.57 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 197.0, 137.0, 132.6, 128.2, 126.1, 81.9, 76.4 and 26.6; HRMS calcd for C₂₀ H₁₄ O₂: 286.099, found: 286.098.

Dimethyl 4,4'-(buta-1,3-diyne-1,4-diyl)dibenzoate (20)

White solid; ¹H NMR (400 MHz, CDCl₃): δ 8.00-7.98 (m, 4 H), 7.58-7.56 (m, 4 H), 3.99 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 132.4, 130.4, 129.5, 126.0, 81.8, 76.2 and 52.3; HRMS calcd for C₂₀H₁₄O₄: 318.089, found: 318.089.

1,4-bis(3-nitrophenyl)buta-1,3-diyne (2p)

White solid; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (t, *J*=0.8 Hz, 2 H), 8.26-8.23 (m, 2 H), 7.85-7.82 (m, 2 H) 7.58-7.54 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 148.0, 138.0, 129.6, 127.3, 124.1, 123.0, 79.9 and 75.4; HRMS calcd for C₁₆ H₈ N₂ O₄: 292.048, found: 292.048.

3,3'-(buta-1,3-diyne-1,4-diyl)dibenzonitrile (2q)

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.70 (m, 2 H), 7.66 (d, *J*=4.0 Hz, 2 H), 7.64 (d, *J*=4.0 Hz, 2 H), 7.48-7.45 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 136.4, 135.7, 132.6, 129.5, 123.0, 117.6, 113.2, 79.9 and 75.4; HRMS calcd for C₁₈H₈N₂: 252.0687, found: 252.0684.

Dimethyl 2,2'-(buta-1,3-diyne-1,4-diyl)dibenzoate (2r)

Pale white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J*=4.4 Hz, 2 H), 7.65 (d, *J*=4 Hz, 2 H), 7.49-7.38 (m, 4 H), 3.94 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 135.1, 132.7, 131.8, 130.59, 128.7, 122.5, 81.4, 76.7 and 52.3; HRMS calcd for C₂₀H₁₄O₄: 318.0892, found: 318.0890.

1,4-bis(3,5-bis(trifluoromethyl)phenyl)buta-1,3-diyne (2s)

Yellow solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.95 (s, 4 H), 7.87 (s, 2 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 132.8, 132.5, 132.4, 132.1, 131.8, 126.7, 124.0, 123.5, 123.0, 121.3, 118.6, 79.6 and 76.0; **HRMS** calcd for C₂₀ H₆ F₁₂: 474.028, found: 474.024.

1,4-bis(2-(trifluoromethyl)phenyl)buta-1,3-diyne (2t)

Pale white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (t, *J*=4.0 Hz, 4 H), 7.53-7.44 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 135.1, 131.5, 129.1, 126.09, 126.04, 125.99, 125.94, 125.5, 119.6, 78.6 and 76.68; HRMS calcd for C₁₈H₈F₆: 338.053, found: 338.050.

1,4-di(thiophen-2-yl)buta-1,3-diyne (2u)

Pale white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.30 (m, 4 H), 6.99-6.97 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 134.3, 128.9, 127.2, 121.9, 77.7 and 76.6; HRMS calcd for C₁₂ H₆ S₂: 213.9911, found: 213.9908.

1,6-bis(3-methoxyphenoxy)hexa-2,4-diyne (2v)

Pale white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.18 (t, *J*=8.0 Hz, 2 H), 6.56-6.48 (m, 6 H), 4.71 (s, 4H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.7, 158.5, 129.9, 107.3, 106.7, 101.4, 73.3, 71.0, 56.1 and 55.2; HRMS calcd for C₂₀ H₁₈O₄: 322.1205, found: 322.1202.

1,4-dicyclohexylbuta-1,3-diyne (2w)

White solid; ¹**H NMR** (400 MHz, CDCl₃): δ 2.43-2.38 (m, 2 H), 1.95-1.76 (m, 7 H), 1.74-1.65 (m, 7 H), 1.56-1.40 (m, 6 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 81.8, 65.0, 39.7, 32.2, 25.7 and 24.7; **HRMS** calcd for C₁₆H₂₂:214.1722, found: 214.1725.

1,4-di(cyclohex-1-en-1-yl)buta-1,3-diyne (2x)

White solid; ¹H NMR (400 MHz, CDCl₃): δ 6.22-6.20 (m, 2 H), 2.10-2.07 (m, 8 H), 1.60-1.56 (m, 8 H); ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 119.9, 82.6, 71.5, 28.6, 25.8, 22.0 and 21.2; HRMS calcd for C₁₆ H₁₈: 210.1409, found: 210.1406.

1,8-dichloroocta-3,5-diyne (2y)

Pale yellow oil; ¹**H NMR** (400 MHz, CDCl₃): δ 3.52 (t, *J*=8.0 Hz, 4 H), 2.27 (t, *J*=8.0 Hz, 4 H), 1.86 (q, *J*=8.0 Hz, 4 H), 1.64 (q, *J*=8.0 Hz, 4 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 65.7, 44.3, 31.3, 25.4 and 18.4; **HRMS** calcd for C₁₂H₁₆Cl₂: 230.063, found: 230.062.

1,8-dibromoocta-3,5-diyne (2z)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 3.40 (t, *J*=8 Hz, 4 H), 2.81 (t, *J*=8 Hz, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 74.9, 66.8, 28.4 and 23.66; **HRMS** calcd for C₈ H₈ Br₂: 216.8993, found: 216.8990.

2,7-dimethylocta-3,5-diyne-2,7-diyl diacetate (2aa)

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 1.96 (s, 6 H), 1.59(s, 12 H); ¹³C NMR (100 MHz, CDCl₃): δ 169.1, 80.3, 71.6, 68.3, 28.5 and 21.6; HRMS calcd for C₁₄ H₁₈ O₄: 250.121, found: 250.119.

.2,7-dimethylocta-3,5-diyne-2,7-diol (2bb)

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 2.03 (s, OH), 1.50 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 89.9, 66.3, 65.5 and 31.0; HRMS calcd for C₁₀H₁₄O₂: 166.099, found: 166.098.

Octa-3,5-diyne-1,8-diol (2cc)

White solid; ¹**H NMR** (400 MHz, CDCl₃): δ 3.69 (t, J=4 Hz, 4 H), 2.80 (s, OH), 2.49 (t, J=4 Hz, 4 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 74.7, 66.5, 60.6 and 23.4; **HRMS** calcd for C₈ H₁₀ O₂: 138.0681, found: 138.0683.

Dodeca-5,7-diyne (2dd)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 2.21 (t, *J*=8.0 Hz, 4 H), 1.49-1.32 (m, 8 H), 0.86 (t, *J*=8.0 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 77.3, 65.2, 30.3, 21.8, 18.8 and 13.4; **HRMS** calcd for C₁₂ H₁₈: 162.1409, found: 162.1408.

S23

S25

S34

