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Figure S1. HPLC chart of transformation of xylose using Mg-Al LDH (dashed line) and 9wt%Cr/Mg-Al LDH 

(solid line). Reaction conditions: xylose (0.67 mmol), catalyst (0.2 g), N,N-dimethylformamide (3 mL), 373 K, 

3 h, 500 rpm, and N2 flow (30 mL min
-1

). 

 

 

 

 

Table S1. Rough calculated conversion and selectivity values for isomerization of xylose over Mg-Al LDH and 

9wt%Cr/Mg-Al LDH. 

Catalyst
Conversion of 
xylose /%

Selectivity for isomerized 
pentoses /%

9wt%Cr/Mg-Al LDH ~80 ~55

Mg-Al LDH ~60 ~30
 

Reaction conditions: xylose (0.67 mmol), catalyst (0.2 g), N,N-dimethylformamide (3 mL), 373 K, 3 h, 500 rpm, 

N2 flow (30 mL min
-1

). The three HPLC peaks attributed to (A) xylose, (B) xylulose and lyxose, and (C) 

ribulose and arabinose were divided by curve fitting with a Gaussian function. The saccharide amounts of each 

peak were calculated using the absolute calibration method with a coefficient based on xylose for peak (A), the 

average of xylulose and lyxose for peak (B), and the average of ribulose and arabinose for peak (C). 
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Figure S2. XRD patterns of various supports and Cr supported catalysts with 9 wt% Cr loading. 
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Figure S3. Cr 2p XPS of various Cr supported catalysts with 9 wt% Cr loading. 
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Figure S4. XRD patterns of Cr/Mg-Al LDHs with various Cr loadings. 
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Figure S5. Lattice parameter a and c of Cr/Mg-Al LDHs with various Cr loadings. 
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Figure S6. Normalized Cr 2p XPS of Cr/Mg-Al LDHs with various Cr loadings. 
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Figure S7. DR UV-vis spectra of Cr/Mg-Al LDH with various Cr loadings and α-Cr2O3, Cr(OH)3·nH2O, 

CrCl3·6H2O and Mg-Cr LDH as reference samples. α-Cr2O3, Cr(OH)3·nH2O, and CrCl3·6H2O are diluted 10 

times with BaSO4. DR UV-vis spectra were collected on a U-3900H (Hitachi) at wavelengths of 220–800 nm 

with a scan rate of 120 nm min
-1

. 
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Figure S8. Fourier transforms of Cr K-edge k
3
-weighted EXAFS of Cr/Mg-Al LDHs with various Cr loadings. 

(A) 1–5 wt% and (b) 5–15 wt%Cr/Mg-Al LDHs. 
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Figure S9. DTA of 15wt%Cr/Mg-Al LDH and Cr
3+

 references. 
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Figure S10. TEM images of Mg-Al LDH and Cr/Mg-Al LDHs with various Cr loadings: (A) Mg-Al LDH, 

(B) 1wt%-, (C) 3wt%-, (D) 4wt%-, (E) 5wt%-, (F) 7wt%- (G) 9wt%-, (H) 13wt%-, and (I) 15wt%Cr/Mg-Al 

LDH. 
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Figure S11. Atomic ratio of Cr/Mg-Al LDHs with various Cr loadings. Atomic ratios were calculated based on 

Cr 2p, Mg 2p, and Al 2p XPS. 
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Table S2. Physical properties of Cr/Mg-Al LDHs with various Cr loadings 

Cr content
SBET

c

/ m2 g-1

S0
d

/ m2

Soccupied
e

/ m2 g(cat)-1

Soccupied
e

/ m2 g(Mg-Al LDH)-1 θf /%
mmol g(Mg-Al LDH)-1 wt%

as Cra

wt%

as Crb

wt%

as Cr2O3
a

0 0 0 0 44.5 44.5 0 0 0

0.19 1 1.0 1.5 55.8 56.6 18.1 18.3 32.3

0.60 3 3.1 4.3 71.8 75.0 54.5 56.2 74.8

0.80 4 4.0 5.7 73.6 78.1 72.6 75.6 96.8

1.02 5 5.1 7.2 83.6 90.1 91.6 96.4 107

1.45 7 7.7 9.9 96.3 107 127 137 128

1.90 9 9.7 12.6 140 160 163 180 112

2.87 13 14.6 17.9 190 232 236 271 117

3.39 15 15.9 20.5 238 299 272 320 107
 

a
Theoretical value. 

b
Obtained by ICP-AES. 

c
BET specific surface area. 

d
Surface area of g(Mg-Al LDH)

-1
 carrier. 

e
Occupied area by Cr2O3 unit (0.16 nm

2
). 

f
Coverage of Cr2O3 on Mg-Al LDH. 

Cross section of Cr2O3 unit on Mg-Al LDH was calculated as the cluster composed of two edge-sharing CrO6 

octahedral using the length of Cr-O (0.198 nm) obtained from EXAFS curve fitting. 

 

 

250

200

150

100

50

0

S
B

E
T
 /
 m

2
 g

-1

151050

Loading amount of Cr / wt%
 

 

Figure S12. Specific surface area of Cr/Mg-Al LDHs with various Cr loadings. 
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Figure S13. Time cause of furfural yield in the one-pot transformation of xylose using 5wt%Cr/Mg-Al LDH 

and Amberlyst-15. Reaction conditions: xylose (0.67 mmol), 5wt%Cr/Mg-Al LDH (0.2 g), Amberlyst-15 (0.1 g), 

N,N-dimethylformamide (3 mL), 373 K, 500 rpm, and N2 flow (30 mL min
-1

). 
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Synthesis of Cr/Supports 

Cr-supported SiO2, CeO2, TiO2(rutile), TiO2(anatase), AlOOH, and γ-Al2O3 (Cr: 9 wt%) were prepared 

by an impregnation method (adsorption) using various supports and an aqueous solution of 

CrCl3∙6H2O and urea: CrCl3∙6H2O was dissolved in 50 mL of distilled water; then 1 g of support and 2 

g of urea were added. After stirring at 353 K for 24 h, the obtained paste was filtered, washed with 2 L 

of distilled water, and then dried at 383 K overnight. 




