Electronic Supplementary Information (ESI)

A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the Methanol-to-Olefins (MTO)

reaction

Beibei Gao,^{ab} Miao Yang,^a Yuyan Qiao,^{ab} Jinzhe Li,^a Xiao Xiang,^{ab} Pengfei Wu,^{ab} Yingxu Wei,^a Shutao Xu,^a Peng Tian,^{*a} and Zhongmin Liu^{*a}

^a National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of

Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China. Fax: 0086-411-84379289; Tel: 0086-411-

84379998; E-mail: tianpeng@dicp.ac.cn ; liuzm@dicp.ac.cn

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Sample -	Gel composition			T/⁰C	t/h	Product	Molar composition ^a
	a TEA	b TEABr	c SiO ₂	17 C	ι η Π	rioduct	
H1	1.8	1.5	0.5	160	48	SAPO-34/18 intergrowth	_
H2	2.0	1.5	0.5	200	48	SAPO-34/18 intergrowth	$AI_{0.451}P_{0.418}Si_{0.131}$
H3	2.0	1.5	0.25	200	48	SAPO-5 +SAPO-34/18 intergrowth	$AI_{0.484}P_{0.444}Si_{0.072}$
H4 ^b	2.0	-	0.4	200	24	SAPO-34	$AI_{0.499}P_{0.418}Si_{0.083}$
H5 ^b	2.0	-	0.2	170	72	SAPO-34	$AI_{0.490}P_{0.441}Si_{0.069}$

 Table S1 Synthesis conditions and compositions of reference samples synthesized under higher

 crystallization temperatures

^a Determined by X-ray fluorescence(XRF) analysis. ^b TEAOH was used as the template in the synthesis gel. Sample H4 has ~1μm crystal size and higher Si content. Sample H5 has nanscaled size and comparable Si content as low-temperature sample L5.

Table S2 Summary of	of the XPS results of SAPO-34 cry	/stals
---------------------	-----------------------------------	--------

	Crystallization	Molar co	-2	
Sample	temperature	XRF	XPS	K°
L5 ^b	120 °C	$AI_{0.510}P_{0.423}Si_{0.067}$	$AI_{0.450}P_{0.474}\:Si_{0.076}$	1.13
L5-10 ^b	120 °C	$AI_{0.495}P_{0.437}Si_{0.068}$	$AI_{0.456}P_{0.473}Si_{0.071}$	1.04
1 (sample R1) ^c	200 °C	$AI_{0.486}P_{0.434}Si_{0.080}$	$AI_{0.453}P_{0.341}Si_{0.206}$	2.58
2 (sample 10 with lower surface Si enrichment) ^c	200 °C	$AI_{0.504}P_{0.420}Si_{0.076}$	$AI_{0.484}P_{0.391}Si_{0.124}$	1.63
3 (SAPO-34 precursor) ^d	200 °C	$AI_{0.448}P_{0.351}Si_{0.200}$	$AI_{0.307}P_{0.246}Si_{0.447}$	2.24
4 (sample 2 after recrystallization) ^d	200 °C	$AI_{0.485}P_{0.379}Si_{0.136}$	$AI_{0.398}P_{0.383}Si_{0.219}$	1.61

^a The surface enrichment index R is defined as [Si/(Si+P+AI)]_{surface}/[Si/(Si+P+AI)]_{bulk} to indicate the degree of surface Si enrichment degree. ^b Samples obtained in this work. ^c SAPO-34 synthesized in the our previous work [1]. ^d SAPO-34 synthesized in our previous work [2].

Sample -	Gel composition ^a			Seeds	Dueduet	Molar composition	
	xTEA	yTEABr	zSiO ₂	(wt%)	Product	XRF ^b	XPS ^c
L5-5	1.8	1.5	0.5	5	SAPO-34	$AI_{0.514}P_{0.423}Si_{0.063}$	-
L5-10	2.0	1.5	0.5	10	SAPO-34	$AI_{0.495}P_{0.437}Si_{0.068}$	$AI_{0.456}P_{0.473}Si_{0.071}$
L5-20	1.8	1.5	0.5	20	SAPO-34	$AI_{0.513}P_{0.422}Si_{0.065}$	_

Table S3 Synthesis conditions and compositions of low-silica nano SAPO molecular sieves

^a x TEA: y TEABr: 0.8 Al₂O₃: 1.0 P₂O₅: z SiO₂: 50 H₂O (120°C, 48h). ^b Determined by X-ray fluorescence(XRF) analysis. ^c Determined by X-ray photoelectron spectroscopy (XPS) compositional analysis.

Fig.S1 XRD pattern of the prepared milled seeds.

Fig. S2 XRD patterns of as-synthesized SAPO samples.

Fig. S3 XRD patterns of as-synthesized reference samples obtained at higher temperature. The emergence of small peak around 16.9° in the patterns indicates the formation of SAPO-34/18 (CHA/AEI) intergrowth in samples H1-H3.

Fig. S4 N_2 adsorption-desorption isotherms of low-silica SAPO-34 samples (the isotherms of sample L7, L8, L5-10 are vertically offset by 50, 100 and 150 cm³g⁻¹, respectively).

Fig. S5 $^{\rm 13}{\rm C}$ MAS NMR spectra of as-synthesized low-silica samples.

Fig. S6 NH₃-TPD profiles of selected SAPO samples.

Fig. S7 XRD patterns of low-silica SAPO-34 nanocrystals synthesized under the assistance of seeds.

Fig. S8. Intensity-weighted size distribution curve of SAPO-34 samples with different amounts of seeds.

Fig. S9 SEM image of sample H4.

Fig. S10 SEM images of sample H5.

Reference

1. D. Fan, P. Tian, S. Xu, D. Wang, Y. Yang, J. Li, Q. Wang, M. Yang and Z. Liu, *New J. Chem.*, 2016, **40**, 4236-4244.

2. M. Yang, P. Tian, C. Wang, Y. Yuan, Y. Yang, S. Xu, Y. He and Z. Liu, *Chem. Commun.*, 2014, **50**, 1845-1847.