Graphene encapsulated Fe_xCo_y nanocages derived from metal–organic

frameworks as efficient activators for peroxymonosulfate

Xuning Li^{a,b}, Alexandre I. Rykov^a, Bo Zhang^a, Yanjie Zhang^c and Junhu Wang^{a,*}

^a Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of

Sciences, Dalian 116023, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^cResearch Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China

^{*}Corresponding author. Tel: +86-411-84379159; Fax: +86-411-84685940; Email: wangjh@dicp.ac.cn

Fig. S1. The calibration curve of PMS concentration determined using iodometric method.

Fig. S2. EDS mapping of Fe₃Co₇@C-650 nanocages.

Fig. S3. High resolution XPS spectrum of N 1s for Fe₃Co₇@C-650 nanocages.

Fig. S4. The time courses of PMS remaining during the reaction. Reaction conditions: [BPA] = 20 mg L⁻¹, [PMS] = 0.2 g L⁻¹, catalyst = 0.1 g L⁻¹, initial solution pH = 6.0.

Fig. S5. GC-MS spectra of the intermediates.

Fig. S6. LC-MS diagram for BPA degradation reaction by activation of PMS on Fe₃Co₇@C-650 nanocages after (A) 10 min and (B) 30 min. Reaction conditions: [BPA] = 20 mg L⁻¹, [PMS] = 0.2 g L^{-1} , catalyst = 0.1 g L^{-1} , initial solution pH = 6.0.

Fig. S7. LC-MS spectra of the intermediates.

Fig. S8. BPA removal profile and relative intensity variations of DMPO-•OH and DMPO-SO₄•⁻ during reaction. Reaction conditions: [BPA] = 20 mg L⁻¹, [PMS] = 0.2 g L⁻¹, catalyst = 0.1 g L⁻¹, T = 298 K, initial solution pH = 6.0.

Fig. S9. The XRD patterns of $Fe_3Co_7@C-650$ before and after 4-cycle run. Reaction conditions: [BPA] = 20 mg L⁻¹, [PMS] = 0.2 g L⁻¹, catalyst = 0.1 g L⁻¹, initial solution pH = 6.0.

Fig. S10. (A) SEM image (B) TEM image, and (C, D) HR-TEM images of Fe₃Co₇@C-650 after 4-cycle run.

Fig. S11. FT-IR spectra of Fe₃Co₇@C-650 before and after 4-cycle run.

Nanocages		Metal con	Average crystallite size		
	Fe	Co	Ν	0	(nm)
Fe ₃ Co ₇ @C-500	17.66	52.14	16.93	13.27	17.6
Fe ₃ Co ₇ @C-650	24.84	71.01	1.01	3.14	23.9
Fe ₃ Co ₇ @C-800	24.68	69.85	1.81	3.66	30.7
Fe ₂ Co ₈ @C-500	18.16	68.67	8.17	5.00	15.9

Table S1. The chemical compositions and average crystallite sizes of $Fe_xCo_y@C$ nanicages

samples	Assignment	IS	QS	B_{hf}	Γ	Area
	8	(mm s^{-1})	(mm s^{-1})	(T)	(mm s^{-1})	(%)
Fe ₂ Co ₈ @C-500	Fe ⁰	0.00	0.02	32.4	0.32	32.4
	Fe ⁰	0.00	0.02	33.8	0.31	36.9
	Fe ₂ O ₃	0.31	1.12	-	0.99	30.7
Fe ₃ Co ₇ @C-500	Fe ⁰	0.00	0.03	32.7	0.32	36.1
	Fe ⁰	0.00	0.00	34.1	0.34	40.6
	Fe ₂ O ₃	0.34	1.14	-	1.00	23.3
Fe ₃ Co ₇ @C-650	Fe ⁰	0.00	0.03	32.9	0.32	39.9
	Fe ⁰	0.00	-0.01	34.2	0.34	60.1
Fe ₃ Co ₇ @C-800	Fe ⁰	0.00	0.01	33.2	0.31	60.2
	Fe ⁰	0.00	-0.01	34.4	0.28	39.8

Table S2. Room temperature ⁵⁷Fe Mössbauer parameters of Fe_xCo_y@C nanocages.

Experimental errors are ± 0.02 mm s⁻¹ for isomer shift (IS), ± 0.03 mm s⁻¹ for quadrupole

splitting (QS) and 1% for relative area. IS is relative to α -iron foil.

Compounds	Retention time (min)	Molecular weight (m/z)	Molecular structure
Product A	5.58 (GC-MS)	94	но
Product B	10.84 (GC-MS)	134	но 🖌 🎢
Product C	8.12 (LC-MS)	244	HO CH ₃ OH
Product D	8.44 (LC-MS)	242	HO CH ₃ O
Product E	7.64 (LC-MS)	290	HOOC $HOOC$
Product F	6.30 (LC-MS)	276	HO CH ₃ COOH CH ₃ COOH
Product G	6.87 (LC-MS)	232	HO CH ₃ COOH
Product H	11.90 (LC-MS)	460	но-С-СН3СОО-С-СН3СОН
Product I	9.60 (LC-MS)	222	HO CH ₃ HO CH ₃ COOH

 Table S3. Reaction intermediates identified by GC-MS and LC-MS