Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

CO_x-free hydrogen production via ammonia decomposition over

molybdenum nitride-based catalysts

Atthapon Srifa, Kaname Okura, Takeou Okanishi, Hiroki Muroyama, Toshiaki Matsui, and Koichi Eguchi*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

Correspondence should be addressed to

Koichi Eguchi

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, JAPAN

TEL: +81-75-383-2519, FAX: +81-75-383-2520 E-mail: eguchi@scl.kyoto-u.ac.jp

Fig. S1 XRD patterns of the synthesized CoMoO₄, NiMoO₄, FeMoO₄ and MoO₃

Catalyst	BET surface area ^a	Total pore volume ^b
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$
MoO ₃	0.7	0.0011
$CoMoO_4$	15.1	0.0087
NiMoO ₄	14.6	0.0074
FeMoO ₄	6.3	0.0042

Table S1 BET surface area and pore volume of the MoO₃, CoMoO₄, NiMoO₄, and FeMoO₄

 a BET surface area calculated from the adsorption branch of the N_{2} isotherm

 $^{\rm b}$ Total pore volumes calculated from the N_2 adsorption at a relative pressure of 0.98

Fig. S2 SEM image of the MoO₃

Fig. S3 SEM image and EDS mapping of the Mo_2N catalyst

Fig. S4 SEM image and EDS mapping of the Co₃Mo₃N catalyst

Fig. S5 SEM image and EDS mapping of Ni_3Mo_3N catalyst

Fig. S6 SEM image and EDS mapping of the Fe₃Mo₃N catalyst

Fig. S7 Ammonia temperature-programmed desorption profiles of Mo₂N, Co₃Mo₃N, Ni₃Mo₃N, and Fe₃Mo₃N catalysts.

Fig. S8 Reaction orders of N₂ over the Co₃Mo₃N catalyst at 500 °C. The partial pressure of N₂ was varied from 10-30 vol.% at a constant space velocity of 10,000 l kg⁻¹ h⁻¹.