Adamantane-based covalent-organic framework: stability, adsorption capability, and behaviour as catalyst and support for palladium and gold for the hydrogenation of nitrostyrene

Mihaela M. Trandafir,^a Lidia Pop,^b Niculina D. Hădade,^b Mihaela Florea,^a Florentina Neațu,^a Cristian M. Teodorescu,^c Bahir Duraki,^d Jeroen A. van Bokhoven,^d Ion Grosu,^{b*} Vasile I. Pârvulescu,^{a*} Hermenegildo Garcia^{e*}

Figure S1. Evolution of conversion ad selectivity in time for the hydrogenation of 4-nitrostyrene (0.067 mmoles) in the presence of 0.5%Pd/COF (10 mg), heptane (5 cm³) and 30 bars H_2 .

Influence of solvent and CO₂ pressurization

The hydrogenation of 4-nitrostyrene was performed also in a polar solvent such as ethanol. The conversion in ethanol is higher than heptane, but the product distribution is similar (Table S1, entry 2). Pressurization with CO_2 did not change the product distribution, ethyl-nitrobenzene being the main product formed, irrespective of the nature of solvent or pressure. These results are in agreement with the results reported in similar conditions¹, where is emphasised that the nitro group interacts with CO_2 dissolved in the solvent, slowing down hydrogenation of the nitro group and decreasing the selectivity to aminostyrene **2**.

Table S1. Hydrogenation of 4-nitrostyrene in different solvents and CO₂ pressure.

Entry	Catalyst	Solvent	P _{CO2}	Conversion	Selectivity (%) to			
			(bar)	(%)	1	2	3	

1	Pd/COF	heptane	-	8.6	100	-	-	
2	Pd/COF	ethanol	-	27	100	-	-	
3	Pd/COF	heptane	1	7	100	-	-	
4	Pd/COF	heptane	30	5	100			
5	Pd/COF	ethanol	1	21	100			
6	Pd/COF	ethanol	30	18	100			

Reaction conditions : 0.067 mmols of 4-nitrostyrene, 5 cm³ of heptane, 10 mg of catalyst, 30 atm hydrogen, 10 min.

Textural characterization of the fresh and spent catalysts

Figure S2. X-ray diffraction for Pd/COF fresh and spent catalysts

Figure S3. Nitrogen adsorption-desorption isotherms at -196 °C of spent Pd/COF.

Figure S4. TEM of Au/C (a) Au/COF (b) and Pd/COF (c) of spent catalysts.

References:

1. H.Yoshida, K. Kato, J. Wang, X. Meng, S. Narisawa, S.Fujita, Z. Wu, F. Zhao and M. Arai, *J. Phys. Chem. C*, 2011, 115, 2257-2267.