Alkaline-earth metal-oxide overlayers on TiO₂:

Application toward CO₂ photoreduction

Stephanie Kwon,^{a‡} Peilin Liao,^{a‡} Peter C. Stair^{b*} and Randall Q. Snurr^{a*}

^a Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road,

Evanston, Illinois 60208, USA; ^b Department of Chemistry, Northwestern University, 2145 Sheridan

Road, Evanston, Illinois 60208, USA

* To whom correspondence should be addressed: pstair@northwestern.edu, snurr@northwestern.edu.

[‡]These authors contributed equally to this work

	Experiment	DFT	DFT-D2			
MgO	4.21 ^a	4.24	4.19			
CaO	4.81ª	4.83	4.77			
SrO	5.16 ^a	5.21	5.13			
BaO	5.52 ^a	5.62	-			
TiO ₂	a= 3.79	a= 3.81	a= 3.79			
anatase $c=9.54^{b}$		c = 9.73	c= 9.73			
6 6 [1]						

Table S1 Lattice parameters for bulk alkaline-earth metal oxides and TiO₂ anatase.

^aExperimental data is from reference [1].

^bExperimental data is from reference [2].

Table S2 Calculated CO_2 adsorption energies (kJ/mol) on (100) surfaces of alkaline-earth metal oxides, MgO, CaO, SrO, and BaO with DFT and DFT-D2 methods.

	CO ₂ Adsorption Energies (kJ/mol)							
	Type 1		Type 2		Type 3		Type 4	
	DFT	DFT-	DFT	DFT-	DFT	DFT-	DFT	DFT-
		D2		D2		D2		D2
MgO	-28	-42	15	-25	-11	-34	-3	-14
CaO	-113	-129	-121	-137	14	-6	18	6
SrO	-159	-174	-174	-187	-17	-38	-8	-15
BaO	-210		-210		-13		-5	

Figure S1 Alkaline earth metal oxide (100) 2x2 supercell (MgO as an example, 0.25 ML CO₂ in Type 1 geometry) used in this study for CO₂ adsorption. Red: O, Grey: Ti, Green: Mg, Dark Grey: C.

Figure S2 Four different geometries of CO_2 adsorption on 0.5 ML SrO/TiO₂. The coverage of CO_2 is 0.5 ML. Red: O, Grey: Ti, Green: Sr, Dark Grey: C.

Figure S3 Top and side views for $2\sqrt{2x}\sqrt{2}$ (a) TiO₂, (b) 0.5 ML SrO/TiO₂, and (c) 1 ML SrO/TiO₂ models used in this study for studying CO₂ reduction pathway. Red: O, Grey: Ti, Green: Sr.

Table S3. Entropic and zero-point energy (ZPE) corrections for molecules.

	TS (kJ/mol)	ZPE (kJ/mol)
$H_{2}(g)$	39	26
$H_2O(g)$	56	55
CO (g)	59	13
$CO_2(g)$	64	30

Table S4. Zero-point energy (ZPE) corrections (kJ/mol) for adsorbed species on the $(2\sqrt{2}x\sqrt{2})$ slabs.

	TiO ₂		0.5 ML SrO/TiO ₂		1 ML SrO/TiO ₂	
	No 2 H _{ED}	With 2 H_{ED}	No 2 H_{ED}	With 2 H_{ED}	No 2 H _{ED}	With 2 H_{ED}
*CO ₂	29	29	26	26	26	26
*COOH	56	56	55	55	55	51
*CO	13	12	13	12	9	9

References

- [1] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Thomson Learning, 1976.
- [2] A. Selloni, A. Vittadini, M. Grätzel, Surf. Sci. 402-404 (1998) 219.