Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

H₃PW₁₂O₄₀/mpg-C₃N₄ as efficient and reusable bifunctional catalyst in one-pot

oxidation-Knoevenagel condensation tandem reaction

Hefang Wang, Cunyue Wang, Yongfang Yang*, Meng Zhao, Yanji Wang*

Fig. S1 Zeta potential distribution.

NH₃-TPD was performed to investigate the acid amounts of HPW, 20%HPW/mpg-C₃N₄ and 30%HPW/mpg-C₃N₄. As shown in Fig. S2, the NH₃-TPD spectra show two desorption peaks, which are the low temperature desorption peak around 120 °C and the high temperature desorption peak around 525 °C, respectively. It indicates that the existence of weak and strong acidic sites on HPW, 20%HPW/mpg-C₃N₄ and 30%HPW/mpg-C₃N₄.^{1,2} The quantitative results are summarized in Table S1. The total acid amount of HPW determined by NH₃-TPD is 2.11 mmol·g⁻¹. Compared with that of 20%HPW/mpg-C₃N₄ (0.385 mmol·g⁻¹), the acid amount of 30%HPW/mpg-C₃N₄ (0.467 mmol·g⁻¹) increases with the increase of HPW loading. The similar results were also obtained in HPW supported on acid-activated palygorskite.³

Fig. S2 NH₃-TPD spectra of HPW, 20%HPW/mpg-C₃N₄ and 30%HPW/mpg-C₃N₄.

Table S1 Acid amounts of HPW, 20%HPW/mpg-C₃N₄ and 30%HPW/mpg-C₃N₄ determined by NH₃-TPD

Sample	Acid amount (mmol·g ⁻¹)			
	Weak acid sites	Strong acid sites	Total acidity	
HPW	0.402	1.71	2.11	
20%HPW/mpg-C ₃ N ₄	0.168	0.217	0.385	
30%HPW/mpg-C ₃ N ₄	0.194	0.273	0.467	

Fig. S3 The effects of H_2O_2 amount on the oxidation of benzyl alcohol over 30%HPW/mpg-C₃N₄.

Fig. S4 The effects of oxidation time (A), Knoevenagel condensation time (B), reaction temperature (C) and catalyst amount (D) on the tandem reaction over 30%HPW/mpg-C₃N₄.

A possible mechanism for oxidation-Knoevenagel tandem reaction of A_1 and malononitrile over 30%HPW/mpg-C₃N₄ is proposed in Scheme 2. For the A_1 oxidation, H₂O₂ reacts with HPW to generate active peroxo intermediate, which is responsible for the A_1 oxidation to B_1 with loss of H₂O molecule.^{4,5} Then the carbonyl group of B_1 is activated by HPW (acidic sites) on the surface of 30%HPW/mpg-C₃N₄ to generate a carbocation. The Lewis-base site of mpg-C₃N₄ abstracts a proton from the methylene carbon of malononitrile to generate the nucleophilic species,⁶ which attacks the carbonyl group of B_1 with C-C bond formation followed by dehydration to form the product C_1 .⁷⁻⁹

Fig. S5 Proposed mechanism for oxidation-Knoevenagel tandem reaction of A1 and malononitrile over 30%HPW/mpg-C3N4.

References

- 1 A. Jha, A. C. Garade, S. P. Mirajkar and C. V. Rode, Ind. Eng. Chem. Res., 2012, 51, 3916-3922.
- 2 R. Liu, X. Xia, X. Niu, G. Zhang, Y. Lu, R. Jiang and S. He, Appl. Clay Sci., 2015, 105-106, 71-77.
- 3 R. Liu, X. Niu, X. Xia, Z. Zeng, G. Zhang and Y. Lu, Rsc Adv., 2015, 5, 62394-62401.
- 4 X. Z. Li, R. Cao and Q. Lin, Catal. Commun., 2015, 69, 5-10.
- 5 M. P. Chaudhari and S. B. Sawant, Chem. Eng. J., 2005, 106, 111-118.
- 6 M. B. Ansari, H. Jin, M. N. Parvin and S. E. Park, Catal. Today, 2012, 185, 211-216.
- 7 G. B. B. Varadwaj, S. Rana and K. M. Parida, Dalton Trans., 2013, 42, 5122-5129.
- 8 M. J. Zhang, P. P. Zhao, Y. Leng, G. J. Chen, J. Wang and J. Huang, *Chem. Eur. J.*, 2012, **18**, 12773-12782.
- 9 A. Karmakar, G. M. D. M. Rubio, M. F. G. Silva, S. Hazra and A. J. L. Pombeiro, *Cryst. Growth Des.*, 2015, **15**, 4185-4197.