SUPPLEMENTARY INFORMATION

Silica-supported chlorometallate(III) ionic liquids as recyclable catalysts for Diels-Alder reaction under solventless conditions

Karolina Matuszek,^a Anna Chrobok,^{a*} Piotr Latos,^a Magdalena Markiton,^a Katarzyna Szymańska,^b Andrzej Jarzębski,^{b,c} Małgorzata Swadźba-Kwaśny^{d*}

- ^{*a*} Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland, e-mail: <u>Anna.Chrobok@polsl.pl</u>
- ^b Department of Chemical Engineering and Process Design, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland
- ^c Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
- ^d QUILL, The Queen's University of Belfast, Belfast, BT9 5AG, United Kingdom, e-mail: <u>m.swadzba.kwasny@qub.ac.uk</u>

Fig. 1. Scanning electron microscopy micrograph of hierarchical porosity silica monolith.

Fig. 2. ¹³C CP MASS NMR of SiO₂-[tespmim][Al₂Cl₇] (Solid state ¹³C NMR experiments were performed using a Bruker 500 MHz NMR spectrometer).

Fig. 3. Nitrogen adsorption isotherms of pure SiO₂ and after functionalisation.

Obtained silica monoliths are characterised by Type IV of isotherm, which is typical for porous materials. After functionalisation, decrease in adsorbed volume of nitrogen and specific surface area was observed, but not in the type of isotherm. It is mean that the functionalisation did not change the structure of support.

Table 1. Data concerning pure	silica and after functionalisation.
-------------------------------	-------------------------------------

Parameter	Pure SiO ₂	Functionalised SiO ₂
S _{BET} , m ² /g	300.25	78.29
Pore volume, cm ³ /g	1.17	0.38

Synthesis of SiO₂-[tespmim][Al₂Cl₇] (alternative method):

SiO₂ (2 g) was suspended in dry toluene (10 cm³). Next, 1 g of [tespmim][Cl] was added. Two-necked round-bottomed flask was equipped with a nitrogen-filled balloon, closed with a septum and stirred at 90 °C for 16 h. Subsequently, toluene and ethanol created in the grafting step were removed under vacuum and the catalyst was dried for 4 h at 80 °C under reduced pressure. The excess of 1-(triethoxysilyl)propyl-3-methylimidazolium was removed by 24 h extraction with boiling dichloromethane. The dried support was then mixed with AlCl₃ in toluene and left stirring for 3 hours at room temperature. After filtration, the excess of AlCl₃ was removed by extraction with boiling dry dichloromethane in an Soxhlet apparatus and the material was dried under reduced pressure.

Fig. 4. ²⁷Al MAS NMR of SiO₂-[tespmim][Al₂Cl₇] obtained with the alternative method (before Soxhlet extraction (top) and after (bottom).

Analysis of Diels-Alder cycloadducts

¹H and ¹³C NMR spectra of Diels-Alder cycloadducts were recorded at 599.829 and 150,827 MHz using Varian spectrometer with TMS as internal standard. GC–MS analysis was performed using an Agilent gas chromatograph 7890C (HP-5 MS capillary column, 30 m x 0.25 mm x 0.25 μ m, helium 1 mL/min) conjugated with an Agilent mass spectrometer 5975C with El ionization (70 eV). Products were identified using the NIST/EPA/NIH Mass Spectral Library.

Bicyclo[2.2.1]hept-5-ene-2-carboxylic acid, ethyl ester:

¹**H NMR** (600MHz, CDCl₃, TMS) δ: 1.22 (t, 3H, J=5.4Hz), 1,24-1,27 (m, 1H), 1.42-1.44 (m, 2H), 1.87-1.92 (ddd, 1H, J=12.1, 9.4, 3.7Hz), 2.88-2.91 (brs, 1H), 2.92-2.95 (dt, 1H, J=9.4, 3.9 Hz), 3.19-3.21 (brs, 1H), 4.04-4.11 (m, 2H), 5.92-5.94 (dd, 1H, J=5.7, 2.8Hz), 6.17-6.19 (dd, 1H, J=5.7, 3.1Hz);

¹³**C NM**R (600MHz, CDCl₃ δ): 14.26, 29,22, 42.53, 43.36, 45.67, 49.60, 60,14, 132.33 137.69, 174.85;

MS (EI) m/z (%) 166 (5, M^{+·}), 121 (7) 101 (17), 93 (7), 91 (10), 77 (7), 73 (8), 66 (100), 65 (10), 55 (15), 39 (13).

COOC₂H₅

Bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, 2,3-diethyl ester:

¹**H NMR** (600MHz, $CDCI_3 \delta$): 1.22 (t, 6H, J=7.2Hz), 1.32-1.34 (m, 1H), 1.46-1.48 (dt, 1H, J= 2.0, 1.4Hz), 3.15-3.17 (m, 2H), 3.27-3.28 (dd, 2H J=1.9, 1.3Hz), 4.03-4.11 (m, 4H), 6.26 (t, 2H, J=1.8Hz);

¹³C NMR (600MHz, CDCl₃ δ): 16.78, 48.95, 50.93, 51.29, 62.87, 137.47, 175.03; MS (EI) m/z (%) 193 (9, M⁺), 173 (17), 165 (13), 145 (4), 128 (3), 127 (37), 119 (23), 100 (2), 99 (35), 91 (23), 77 (6), 67 (7), 66 (100), 65 (15), 53 (4), 39 (13).

1-(Bicyclo[2.2.1]hept-5-en-2-yl)ethanone:

¹H NMR (600MHz, CDCl₃ δ): 1.33-1.35 (m, 1H), 1.46-1.52 (m, 2H), 1.74-1.79 (ddd, 1H, J=8.7, 3.3Hz), 2.13-2.15 (s, 3H), 2.90-2.93 (brs, 1H), 3.00-3.03 (dt, 1H J=8.7, 3.9Hz), 3.24-3.26 (brs, 1H), 5.86-5.88 (dd, 1H, J=5.7, 2.8Hz), 6.16-6.18 (dd, 1H, J=5.6, 3.1Hz); ¹³C NMR (600MHz, CDCl₃ δ): 30.08, 31.83, 45.32, 48.50, 52.59, 55.01, 133.86, 140.51, 211.61;

MS (EI) m/z (%) 136 (6, M⁺⁺), 117 (1), 94 (1), 92 (2), 91 (10), 79 (2), 77 (11), 72 (1), 71 (14), 67 (6), 66 (100), 65 (12), 63 (3), 58 (8), 51 (5), 43 (31), 41 (6), 39 (21).

Bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride:

¹H NMR (600MHz, CDCl₃ δ): 1.57-1.59 (dt, 1H, J=9.1, 1.5Hz), 1.78-1.79 (dt, 1H, J=9.0, 1.7Hz), 3.50-3.52 (m, 2H), 3.57-3.59 (dd, 2H, J=3.0, 1.6Hz), 6.29-6.30 (t, 2H, J=1.9Hz); ¹³C NMR (600MHz, CDCl₃ δ): 48.75, 49.72, 55.39, 138.16, 173.94; MG (51) $\approx (5 (24) + 2.5$

MS (EI) m/z (%) 164 (1, M+·), 120 (3), 99 (2), 92 (13), 91 (39), 89 (1), 77 (2), 67 (5), 66 (100), 65 (16), 63 (7), 51 (8), 40 (9), 39 (30), 38 (8).

Tricyclo[6.2.1.0]undeca-4,9-diene-3,6-dione:

¹H NMR (600MHz, CDCI3 δ): 1.41-1.44 (dt, 1H, J=8.7, 1.7Hz), 1.52-1.55 (dt, 1H, J=8.7, 1.7Hz), 3.20-3.22 (brs, 2H), 3.52-3.55 (brs, 2H), 6.05-6.06 (m, 2H), 6.56-6.57 (m, 2H); ¹³C NMR (600MHz, CDCI3 δ): 50.98, 51.33, 51.39, 137.91, 144.66, 202.01; MS (EI) m/z (%) 174 (14, M⁺⁻), 91 (11), 82 (6), 67 (6), 66 (100), 65 (18), 63 (6), 54 (15), 53 (5), 40 (14).

5-(Methoxycarbonyl)bicyclo[2.2.1]hept-2-ene:

¹**H NMR** (600MHz, CDCl₃ δ): 1.27-1.29 (d, 1H, J=8.1Hz), 1.41-1.45 (m, 2H), 1.89-1.93 (ddd, 1H, J=11.8, 9.4, 3.7Hz), 2.89-2.92 (brs, 1H), 2.93-2.96 (dt, 1H, J=9.2, 3.9Hz), 3.19-

3.21 (brs, 1H), 3.62 (s, 3H), 5.92-5.94 (dd, 1H, J=5.7, 2.8 Hz), 6.18-6.20 (dd, 1H, J=5.7, 3.1Hz);

¹³**C NMR** (600MHz, CDCl₃ δ): 31.91, 45.16, 45.82, 48.30, 52.26, 54.10, 135.01, 140.38, 177.89;

MS (EI) m/z (%) 154 (21, M⁺), 95 (49), 94 (100), 93 (19), 79 (73), 77 (23), 67 (36), 55 (25), 41 (25), 39 (33).

4-Methoxycarbonyl-1-methylcyclohexene:

¹H NMR (600MHz, CDCl3 δ): 1.65 (brs, 3H), 1.68-1.72 (m, 2H), 1.98-2.02 (m, 2H), 2.20-2.24 (m, 2H), 2.47-2.52 (ddd, 1H, J=11.5, 9.2, 2.8Hz), 3.68 (s, 3H), 5.36-5.38 (m, 1H); ¹³C NMR (600MHz, CDCl3 δ): 26.07, 28.11, 30.31, 31.91, 41.79, 54.18, 121.84, 136.33, 179.08;

MS (EI) m/z (%) 155 (34, M^{+.}), 153 (13), 139 (6), 123 (27), 121 (12), 96 (11), 95 (100), 94 (40), 81 (11), 79 (21), 77 (7), 67 (31), 55 (19), 41 (25), 40 (6).

1,2,3,6-Tetrahydro-4-methylphthalic anhydride:

¹H NMR (600MHz, CDCl3 δ): 1.76-1.78 (brs, 3H), 2.25-2.28 (m, 2H), 2.48-2.52 (dd, 1H, J=15.6, 2.9Hz), 2.55-2.60 (ddd, 1H, J=15.6, 6.4, 2.7Hz), 3.31-3.42 (m, 2H), 5.61-5.64 (m, 1H);

¹³**C NMR** (600MHz, CDCl3 δ): 26.10, 26.70, 31.04, 42.08, 42.72, 122.78, 139.20, 176.88, 177.03;

MS (EI) m/z (%) 166 (3, M⁺), 139 (2), 138 (27), 123 (4), 93 (89), 78 (11), 65 (9), 51 (17), 41 (11), 39 (41), 40 (7).

Bicyclo[2.2.1]hept-5-ene-2-methyl-2-carboxaldehyde, ¹H NMR (600MHz, CDCl₃, TMS) δ: 0.76-0.78 (dt, 1H, J=9.1, 1.4Hz), 1.02 (s, 3H), 1.39-1.41 (m, 2H), 2.24-2.28 (dd, 1H, J=12.0, 3.8Hz), 2.82-2.84 (m, 1H), 2.89-2.92 (brs, 1H), 6.11-6.13 (m, 1H), 6.29-6.31 (m, 1H), 9.40 (s, 1H, *endo*) 9.70 (s, 1H, *exo*); ¹³C NMR (600MHz, CDCl3 δ): 22.67, 37.24, 45.85, 50.24, 51.10, 56.52, 135.72, 142.17, 208.42; MS (EI) m/z (%) 136 (4, M⁺⁻), 107 (2), 92 (1), 91 (7), 80 (1), 79 (9), 78 (2), 67 (7), 66 (100), 65 (12), 63 (3), 51 (5), 43 (3), 41 (12), 40 (7), 39 (25), 37 (1).