Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supporting Information (SI) for:

In Situ electrochemical formation of NiSe/NiO_x core/shell nano-electrocatalysts for superior oxygen evolution activity

Ruiqin Gao,^a Guo-Dong Li,^a Jiabo Hu,^a Yuanyuan Wu,^a Xinran Lian^a, Dejun Wang,^{a,b} and Xiaoxin Zou*

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
^b Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China

*Corresponding author. E-mail: <u>xxzou@jlu.edu.cn</u> (X. Zou)

Figure S1. Photograph of NF (left) and NiSe/NF (right).

Figure S2. XRD patterns of the NiSe-NiO (blue), NiSe-NiO_x/NF (red) and NiSe/NF (black). \checkmark , • and \star represent NiSe in hexagonal phase (PDF#65-3425), in rhombohedral phase (PDF#18-0887) and Ni₃Se₂ (PDF#19-0841), respectively.

Figure S3. EDX spectrum of the NiSe nnaorod for NiSe/NF (The peak locating at 6.3KeV in figure B comes from background).

Figure S4 TEM images of NiSe-NiO_x. NiSe core is densely coated with NiO_x layer.

Figure S5. Tafel plots for OER over NiSe-NiO_x/NF.

Figure S6 Constant potential electrolysis with IrO_2 at an overpotential of 274 mV in 1M KOH.

Figure S7. (A) SEM image of NiSe-NiO/NF, (B) TEM image of NiSe-NiO/NF, (C) HRTEM taken from the core of NiSe-NiO/NF, (D) HRTEM taken from the shell of NiSe-NiO/NF.

Figure S8. (A) Polarization curves of NiSe-NiO_x/NF and NiSe-NiO/NF for OER, (B) I-t curves of NiSe-NiO_x/NF and NiSe-NiO/NF at an overpotential of 274 mV, (C) Polarization curves of NiSe-NiO_x/NF and NiSe-NiO/NF for HER, (D) I-t curves of NiSe-NiO_x/NF and NiSe-NiO/NF at an overpotential of 150 mV. All the measurements were carried out in 1M KOH.

Figure S9 Plots showing the extraction of the double-layer capacitive (C_{dl}) for IrO₂.

Figure S10. Photograph showing the generation of H_2 and O_2 bubbles on NiSe-NiO_x/NF electrodes.

Table S1. Comparison of the electrocatalytic activity of NiSe-NiO_x/NF reported here under alkaline medium via-a-via some good NiO-related OER catalysts that have been recently reported for alkaline solution.

Catalyst	Current density (mA/cm ²)	Overpotential (mV)	Reference
NiSe-NiO _x	10	243	This work
NiFeO _x /CFP	10	230	Nat. Commun. 2015 , 6, 7261.
Ni-NiO/N-rGo	10	240	Adv. Funct. Mater. 2016 ,25,5799
Fe ₆ Ni ₁₀ O _x	10	286	Angew. Chem. Int. Ed. 2014 ,53,7547
Ni ₂ P/NiO	10	290	Energy Environ. Sci. 2015 , 8, 2347.
Ni _{0.71} Fe _{0.29} (OH) _x	10	296	Nanoscale, 2016 , 8, 5015.
Ni(OH) ₂	10	299	Faraday Discuss., 2014 , 176, 363.
NiO/TiO ₂	10	320	J. Am. Chem. Soc. 2016 , 138, 6517.
NiCo ₂ O ₄	10	320	Angew. Chem. Int. Ed. 2015 , 127, 7507
Ni@C/NF	10	330	J. Mater. Chem. A 2016 , 4, 7297.
α-Ni(OH) ₂	10	331	J. Am. Chem. Soc. 2014 , 136, 7077.
NiO/NF	10	345	J. Mater. Chem. A 2016 , 4, 9797.
Ni-NG	10	400	Energy Environ. Sci. 2013 , 6, 3693.
NiO _x /Ni	10	390	<i>Applied Surface Science,</i> 2015 , 359, 172.