

Catalysis Science & Technology

ARTICLE

Supporting Information

Creation of mesostructured hollow Y zeolite by selective demetallation of artificial heterogeneous Al distributed zeolite crystal

Delin Yuan, Chunyan Kang, Wennian Wang, Hao Li, Xiaochun Zhu, Yandan Wang, Xionghou Gao, Baojie Wang, Hongjuan Zhao, Conghua Liu and Baojian Shen*

Table of contents

Figures

- Figure S1. SEM image (a) and TEM images (b) of the ST-AT zeolite.
- Figure S2. The pore size distribution derived from mercury intrusion.
- Figure S3. ²⁹Si MAS NMR spectra of Y zeolites at different stages of the sequential treatments.
- Figure S4. 1,3,5-Triisopropylbenzene conversion versus time on stream for the ST-AT-BT, ST and USY zeolites.

Tables

- Table S1. Notation of samples obtained by SiCl₄ treatment.
- Table S2. Notation of acid and base treatment conditions.

Table S3. Texture properties of Y zeolites with different treatment.

- Table S4. Chemical composition of the filtrates upon different treatments of Y sample.
- Table S5. Properties of the Dalian vacuum gasoil.

Figure S1. SEM image (a) and TEM images (b) of the ST-AT zeolite.

Figure S2. The pore size distribution derived from mercury intrusion.

Figure S3. ²⁹Si MAS NMR spectra of Y zeolites at different stages of the sequential treatments. Solid lines: experimentally observed spectra; Dashed lines: resolved components.

Figure S4. 1,3,5-Triisopropylbenzene conversion versus time on stream for the ST-AT-BT, ST and USY zeolites.

Tuble 51. Rotation of samples obtained by 51014 fieldment.					
Treatment code	Temperature/K	Time/h	Si/Al ^a	Si/Al ^b	
ST	703	1	6.4	3.4	
ST2	703	1.5	9.8	4.2	
ST3	703	3	15.9	8.1	

Table S1. Notation of samples obtained by SiCl₄ treatment.

^a Determined by XRD; ^b Determined by XRF.

Table S2. Notation of acid and base treatment con	ditions.
---	----------

Treatment code	Temperature/K	Time/h	Concentration/mol/L	Reagent
AT	363	1	0.5	HCl
AT1	363	1	0.2	HCl
AT2	363	1	1.0	HCl
OT	363	1	0.2	Oxalic acid
ET	363	1	0.1	H ₄ EDTA
BT	338	1	0.2	NaOH
BT1	338	1	0.1	NaOH
BT2	338	1	0.4	NaOH
BT3	338	1	0.05	NaOH

Table S3. Texture properties of Y zeolites with different treatment.

Samples	S _{BET} ^{a)}	S _{external} ^{b)}	V _{pore} ^{c)}	V _{micro} ^{b)}	V _{meso} ^{d)}
Samples	m^2g^{-1}	m^2g^{-1}	cm ³ g ⁻¹	cm ³ g ⁻¹	cm ³ g ⁻¹
ST	595.0	52.9	0.33	0.25	0.04
ST-AT	640.4	61.5	0.34	0.27	0.04
ST-AT1	508.4	54.2	0.28	0.21	0.05
ST-BT	563.1	34.9	0.29	0.24	0.04
ST-BT2	692.9	47.7	0.40	0.30	0.08
ST2	547.8	44.6	0.31	0.25	0.04
ST2-AT	563.0	56.5	0.29	0.22	0.06
ST2-AT1	563.0	57.9	0.30	0.23	0.06
ST2-AT2	498.5	61.5	0.27	0.20	0.05
ST2-BT	520.6	70.8	0.30	0.21	0.07
ST2-BT2	411.4	69.0	0.29	0.16	0.11
ST2-AT-BT	685.0	235.2	0.52	0.22	0.27
ST3	533.0	34.9	0.31	0.25	0.05
ST3-BT1	257.0	204.0	0.22	0.02	0.17
ST3-BT3	514.4	68.2	0.29	0.21	0.06
ST3-AT-BT	585.3	224.3	0.40	0.17	0.21

^{a)} BET method; ^{b)} *t*-plot method; ^{c)} Volume adsorbed at $p/p_0=0.99$. ^{d)} Calculated from BJH, V_{meso}= Volume in pores between 2-50 nm.

-				
Sample	(Si/Al) _{filtrate} (mol/mol)	[Si] _{filtrate} (ppm)	[A1] _{filtrate} (ppm)	
ST	-	-	-	
ST-AT	0.1	139.5	2531.4	
ST-AT-BT	166.9	5792.9	34.7	

Table S4. Chemical composition of the filtrates upon different treatments of Y sample from ICP-OES analyse.

 Table S5. Properties of the Dalian vacuum gasoil.

Item	Dalian vacuum gasoil
Density (20 °C), g/cm ³	0.93
Kinematic viscosity at 100 °C, mm ² /s	13.84
Residual coke, wt%	4.19
Saturates, wt%	64.68
Aromatics, wt%	28.44
C, wt%	86.76
H, wt%	11.63