Supporting Information

Highly dispersed Pt nanoparticles supported on carbon nanotubes produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane

Jiankang Zhang,^{a,b} Chaoqiu Chen,^{a,*} Shuai Chen,^a Qingmin Hu,^a Zhe Gao,^a

Yunqin Li,^{a,b} Yong Qin^{a,*}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of

Sciences, Taiyuan 030001, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100039, P. R. China

^{*}Corresponding authors. +86 351 4040081.

E-mail addresses: chenchaoqiu@iccas.ac.cn and qinyong@sxicc.ac.cn.

1. Calculation Methods of initial TOF and linear Rate

The calculation methods used in this work were taken from Ref. 7 and 18. For the conversion of reaction (x_c) , initial TOF and linear Rate, there are the following equations:

$$x_{c} = \frac{P_{atm}V_{H2}/RT}{3n_{AB}}$$
$$TOF = \frac{P_{atm}V_{H2}/RT}{n_{metal}t}$$
$$Linear - Rate = \frac{V_{H2}}{t}$$

where P_{atm} is the atmospheric pressure, V_{H2} is the generated gas volume, R is the universal gas constant, T is room temperature (298 K), and n_{metal} is the mole number of the metallic Pt metal, and t is the reaction time when x_c reaches about 35%; Initial rate of H₂ evolution, linear Rate, equals the rate of H₂ generation when x_c reaches 35%, t is the reaction time when x_c reaches about 35%.

Fig. S1 Low (a), high magnification (b) TEM images and representative (c) HAADF-STEM image of Pt20/CNTs catalysts. Insets in (b) is the FFT of single Pt nanoparticle for Pt20/CNTs catalysts.

Fig. S2 High-resolution XPS O1s of (a) CNTs, (b) O₃ pretreated CNTs (CNTs-O₃) and (c) Pt20/CNTs samples. (d) FTIR spectra of CNTs, CNTs-O₃ and Pt20/CNTs samples.

Sample	Relative content (%)		
	C=O	C-O	Adsorbed water
CNTs	45.1	54.2	0.7
CNTS-O ₃	34.3	60.3	5.4
Pt20/CNTs	27.8	71.3	0.9

Table S1 Data comparison of XPS O1s deconvolution of the different samples.

Both XPS O1s and FTIR confirm the existence of the oxygen-containing groups on CNT surface, as shown in Fig. S2a-d. The difference of oxygen-containing functional groups is not very obvious, and this is probably because that the pulse time (1 s) and exposure time (10 s) of O_3 to substrate (CNTs) is too short for Pt20/CNTs catalysts with 20 Pt ALD cycles.

Fig. S3 Raman spectra of (a) CNTs, (b) CNTs-O₃ and (c) Pt20/CNTs.

Generally, D band centered around 1352 cm⁻¹ and G band centered around 1579 cm⁻¹ in Raman spectra stand for disorder and graphite, which correspond to defect and graphite properties of CNTs. The D band is disorder induced features caused by lattice defect and is usually attributed to the presence of amorphous or disordered carbon in CNTs. While the G band reflects well-graphitized carbons in CNTs. The calculated I_D/I_G value is about 0.88, 0.95 and 1.07 respectively for CNTs, CNTs-O₃ (pretreated with O₃ without pulse of MeCpPtMe₃) and Pt/CNTs samples. These results further confirm the existence of the oxygen-containing groups on CNT surface during the whole ALD process, which can act as active/anchoring sites for the MeCpPtMe₃ chemisorption, Pt nucleation and growth and finally results in a uniform dispersion of Pt nanoparticles on CNTs.

Fig. S4 XPS survey spectra of CNTs and Pt20/CNTs samples.

Table S2 Summary of XPS results for the Pt/CNTs catalysts with different Pt ALD cycle num	nbers.

Catalysts	Relative content (%)	B.E. (eV)	Assignment	$\Delta BE (eV)^a$
	41.3	71.8	Metallic Pt ⁰	
Pt10/CNTs	44.4	72.8	Pt^{2+}	0
	14.3	74.6	Pt^{4+}	
	39.8	71.5	Metallic Pt ⁰	
Pt20/CNTs	39.5	72.4	Pt^{2+}	0.3
	20.7	74.1	Pt^{4+}	
Pt40/CNTs	40.5	71.4	Metallic Pt ⁰	
	40.8	72.2	Pt^{2+}	0.6
	18.7	74.0	Pt^{4+}	

^a The difference of the binding energy (ΔBE) is calculated based the Pt10/CNTs catalysts.

Fig. S5 Possible ALD growth mechanism of Pt nanoparticles on CNTs.

Fig. S6. (a) TEM image and (b) the corresponding particle size distribution of Pt20/CNTs catalysts reduced by H_2 at 200 °C. (c) XPS spectra of Pt4f in Pt20/CNTs catalysts before (a) and after (b) H_2 reduction at 200 °C. (d) The catalytic activity comparison of Pt20/CNTs catalysts before and after H_2 reduction.

Fig. S7 Low (a) and high (b) magnification TEM images of Pt20/CNTs catalysts reduced by H_2 at 400 °C (Inset in Fig. S7b: the corresponding particle size distribution of Pt nanoparticles). (c) Hydrogen generation from AB solution (0.15 mol/L, 10.0 mL) at 25 ± 0.5 °C catalyzed by the Pt20/CNTs catalysts reduced under different temperatures.

Fig. S8 (a) Catalytic activity comparison of Pt/CNTs catalysts prepared by ALD, impregnation and wet chemical reduction, and TEM images of Pt/CNTs catalysts prepared by (b) ALD, (c) impregnation and (d) wet chemical reduction (inset in Fig S8c and S8d: the corresponding Pt nanoparticle size distribution).

Fig. S9 (A) XRD patterns and (B) XPS Pt4f levels of the (a) fresh and (b) deactivated Pt20/CNTs catalysts.

Catalysts	Relative content (%)	B.E. (eV)	Assignment	$\Delta BE (eV)^a$
	39.8	71.5	Metallic Pt	
Fresh	39.5	72.4	Pt^{2+}	0
	20.7	74.1	Pt^{4+}	
	40.3	71.3	Metallic Pt	
Deactivated	39.3	72.2	Pt^{2+}	0.3
	20.4	73.7	Pt^{4+}	

Table S3 Relative content of Pt species content of the fresh and deactivated Pt20/CNTs catalysts.

^a The difference of the binding energy (ΔBE) is calculated based the fresh Pt20/CNTs catalysts.

Fig. S10 Hydrogen generation from AB solution (0.15 mol/L, 10.0 mL) catalyzed by Pt20/CNTs and calcinated TiO₂(300)/Pt20/CNTs and TiO₂(450)/Pt20/CNTs catalysts at 25 ± 0.5 °C.

Table S4 Specific surface area and total pore volume of the as-prepared and calcinated $TiO_2/Pt20/CNTs$ samples.

Samula	$\mathbf{S}_{\mathrm{BET}}$	V_t
Sample	(m ² /g)	(cm ³ /g)
As-prepared	59.1	0.064
Calcinated	72.2	0.142

Fig. S11 Low (a) and high magnification (b, c and d) TEM images of calcinated $TiO_2/Pt20/CNTs$ catalysts. (e) HRTEM images of calcinated $TiO_2/Pt20/CNTs$ catalysts. (Inset in Fig. S11d and e: the corresponding particle size distribution of the catalysts and FFT of the Pt nanoparticle; The ALD number cycle of TiO_2 is 300).

Fig. S12 HRTEM image after ten catalytic cycles of calcinated $TiO_2/Pt20/CNTs$ catalysts (The ALD number cycle of TiO_2 is 300).