Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface – Revisited

Shaoli Liu,^{*a,b,c*} Yong-Wang Li,^{*a,b**} Jianguo Wang^{*a*} and Haijun Jiao^{*a,d**}

a) State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China; b) National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China; c) University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China; d) Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein Strasse 29a, 18059 Rostock, Germany. E-mail: <u>wul@sxicc.ac.cn</u>; <u>haijun.jiao@catalysis.de</u>

Table of content Micro-kinetics Page S3 **Table S1**. Most stable adsorption site, adsorption energy (E_{ads} , eV), and relative bond distances (d_{Co-X_c} Å) of the surface species Page S6 **Table S2**. The adsorption energy (E_{ads} , eV) and the relative bond distances (d_{Co-X} , Å) of the surface species, as well as the reaction energy (E_r , eV) and the barrier energy (E_a , eV) in the diffusion reaction of the surface species Page S7 **Table S3.** Computed adsorption energies (E_{ads} , eV), and the relevant bond distances (d, Å) of the IS, TS and FS for the reactions via H-assisted pathway Page S8 **Table S4.** Computed adsorption energies (E_{ads} , eV), and the relevant bond distances (d, Å) of the IS, TS and FS for the reactions via OH-assisted pathway Page S9 **Table S5.** Energy barrier E_a (eV) and reaction energy E_r (eV) as well as the rate constant k (483K) of CO hydrogenation in the Hassisted pathway on the Co(0001) surface Page S10 Table S6: Barriers E_a (eV) and reaction energies E_r (eV) as well as the rate constant k (483K) of CO activation via OH-assisted pathway Page S11

List of Figures

Figure S1. Top (a) and side (b) reviews as well as possible adsorption sites of the hcp Co(0001) surface	Page S12
Figure S2. Top and side views of the relative surface species on the Co(0001) surface	Page S13
Figure S3. The geometries of the initial state and the final state as well as the transition state of the surface spec	cies in the
diffusion reaction	Page S14
Figure S4. The geometries of the initial state and the final state as well as the transition state for the reactions sta	rting from
CO+H in the H-assisted pathway	Page S15
Figure S5. The geometries of the initial state and the final state as well as the transition state for the reactions sta	rting from
CH ₂ O in the H-assisted pathway	Page S16
Figure S6. The geometries of the initial state and the final state as well as the transition state in the reaction of the c	oupling of
CH _x (x=1-3) with H or CO	Page S17
Figure S7. The geometries of the initial state and the final state as well as the transition state for the reactions sta	rting from
CO+OH in the OH-assisted pathway	Page S18
Figure S8. The geometries of the initial state and the final state as well as the transition state for the reactions sta	rting from
COH in the OH-assisted pathway	

Page S19

Micro-kinetics

(a) To distinguish the selectivity of CH₃O hydrogenation and dissociation, we computed the rate constant (*k*) on the basis of the transition state theory.^{1,2} The rate constant of each reaction is calculated according to equation (1), where k_B is the Boltzmann constant, *T* denotes the reaction temperature, *h* is the Planck constant, E_a stands for the activation barrier of each reaction, and $q_{\text{IS,vib}}$ and $q_{\text{TS,vib}}$ are the harmonic vibrational partition functions for the initial state and the transition state, respectively; i.e., q_{vib} is calculated on the basis of equation (2), where v_i is the vibrational frequency of each vibrational mode of the adsorbed intermediate derived from our DFT calculations. The computed energy barriers and reaction energy as well as rate constants are listed in the Supporting Information.

$$k = \frac{k_B T}{h} \frac{q_{TS,vib}}{q_{IS,vib}} e^{\frac{-E_a}{k_B T}}$$
(1)

 $q_{vib} = \prod_{i} \frac{1}{1 - \exp\left(-\frac{hv_i}{k_B T}\right)}$ (2)

(b) The rate equation of the related competitive reactions

In order to investigate the competition between hydrogenation and dissociation, we consider the following rate equations of the elementary steps involved on the potential energy surface.

CO + S = C + O	Eq. 1
CO + H = CHO + S	Eq. 2
CO + H = COH + S	Eq. 3
CHO + S = CH + O	Eq. 4
$CHO + H = CH_2O + S$	Eq. 5
CHO + H = CHOH + S	Eq. 6
$CH_2O + S = CH_2 + O$	Eq. 7
$CH_2O + H = CH_3O + S$	Eq. 8
$CH_2O + H = CH_2OH + S$	Eq. 9
$CH_3O + S = CH_3 + O$	Eq. 10
$CH_3O + H = CH_3OH + S$	Eq. 11

The rate equation of each reaction can be expressed as equations in the following:

$r_1 = k_1[S][CO]$	(3)
$r_2 = k_2[H][CO]$	(4)
$r_3 = k_3[H][CO]$	(5)
$r_4 = k_4[S][CHO]$	(6)
$r_5 = k_5[H][CHO]$	(7)
$r_6 = k_6[H][CHO]$	(8)
$r_7 = k_7[S][CH_2O]$	(9)
$r_8 = k_8[H][CH_2O]$	(10)
$r_9 = k_9[H][CH_2O]$	(11)
$r_{10} = k_{10}[S][CH_3O]$	(12)
$r_{11} = k_{11}[H][CH_3O]$	(13)

Under hydrogen rich conditions, the surface active sites can be occupied by hydrogen atoms; and these surface hydrogen atoms

can be used for the hydrogenation reactions; on the other hand, there will be no free sites available to accept the O atom from the dissociation reactions. The availability of surface hydrogen atoms will accelerate all hydrogenation steps and at the same time suppress the dissociation steps.

(c) The rate equation of CH_3OH and CH_4 formation

In the process of the formation of CH₄ and CH₃OH on the Co(0001) surface, CO \rightarrow CHO \rightarrow CH₂O \rightarrow CH₃O is an optimal pathway. At first, H₂ molecule adsorbs dissociative on the surface (Eq. 12); and CO molecule adsorbs on the surface (Eq. 13); and the subsequent hydrogenation of CO to form CH₃O (Eq. 2, 5 and 8), which is further hydrogenated to CH₃OH (Eq. 11); finally the surface CH₃OH desorbs (Eq. 14) from the surface.

$H_{2(g)} + 2S = 2H$	Eq. 12
$CO_{(g)} + S = CO_s$	Eq. 13
CO + H = CHO + S	Eq. 2
$CHO + H = CH_2O + S$	Eq. 5
$CH_2O + H = CH_3O + S$	Eq. 8
$CH_3O + S = CH_3 + O$	Eq. 10
$CH_3O + H = CH_3OH + S$	Eq. 11
$CH_3OH = CH_3OH_{(g)} + S$	Eq. 14
$CH_3 + H = CH_4 + S$	Eq. 15
$CH_4 = CH_{4(g)} + S$	Eq. 16
O + H = OH + S	Eq. 17
$OH + H = H_2O + S$	Eq. 18
$H_2O = H_2O_{(g)} + S$	Eq. 19

For the CH_4 formation, starting from CH_3O , CH_3 is formed via the dissociation reaction (Eq. 10), then through hydrogenation reaction to obtain CH_4 (Eq. 15), followed by desorption of CH_4 from the surface (Eq. 16). Finally the surface O is hydrogenated by H into OH (Eq. 17) and H_2O (Eq. 18), followed by H_2O desorption (Eq. 19) and the regeneration of the free surface sites.

On the basis of the potential energy surface and the computed energy barriers of these reactions, we found that CH_3O hydrogenation to CH_3OH and dissociation to $CH_3 + O$ are competitive reactions, and these two reaction have highest barrier (1.55 and 1.56 eV, respectively), and should be the rate-determining steps for the formation of CH_3OH and CH_4 , respectively. Therefore, the rate of the formation of CH_3OH and CH_4 can be defined by reactions 11 and 10. Thus, the rate equation of the formation of CH_3OH and CH_4 can be expressed as equation (14) and (15):

$$r[CH_3OH] = k_{11}(Z/L)[H][CH_3O]$$
(14)

$$r[CH_4] = k_{10}[S][CH_3O]$$
(15)

Where k_{11} is the rate constant of CH₃O hydrogenation (Eq. 11), (*z*/L)[H] represents the probability of finding adjacent [CH₃O] surface species to [H] species, L represents the total surface number of active sites S for H₂ adsorption, and [CH₃O] and [H] denote surface concentrations of CH₃O and dissociated hydrogen on the surface, respectively. Since all the other steps are assumed to be in quasi-equilibrium, we can obtain the concentrations of the surface species as follows:

$$[H]: [H] = K_1^{2}[S][H_{2g}]^{2}$$
(16)

$$[CO]: [CO] = K_{2}[CO_{a}][S]$$
(17)

[CHO]:
$$k_2$$
[CO][H] – k_5 [CHO][H] = 0, thus [CHO] = $\frac{k_2}{k_5}$ [CO] (18)

$$[CH_2O]: k_5[CHO][H] - k_8[CH_2O][H] = 0, \text{ thus } [CH_2O] = \frac{k_5}{k_8}[CO]$$
(19)

$$[CH_{3}O]: k_{8}[CH_{2}O][H] - k_{11}[CH_{3}O][H] - k_{10}[CH_{3}O][S] = 0, \text{ thus } [CH_{3}O] = \frac{k_{2}[CO][H]}{k_{11}[H] + k_{10}[S]}$$
(20)

Considering site balance for S, $[L] = [S] + [H] + [CO] + [CHO] + [CH_2O] + [CH_3O] + [CH_3OH]$ Where K_1 is the equilibrium constant of H₂ adsorption and desorption, K_2 is the equilibrium constant of CO adsorption and desorption, [S] denotes surface concentrations of free site, k_n is the rate constant of the corresponding reaction.

Substitute the equations (16) - (20) to (14) and (15) we can get the rate equation of CH_3OH and CH_4 formation:

$$r[CH_{3}OH] = k_{11}(Z / L)[H] \frac{k_{2}K_{2}[CO_{g}][S]K_{1}^{\frac{1}{2}}[S][H_{2g}]^{\frac{1}{2}}}{k_{11}K_{1}^{\frac{1}{2}}[S][H_{2g}]^{\frac{1}{2}} + k_{10}[S]}$$
(21)

$$r[CH_4] = k_{10}[S] \frac{k_2[CO][H]}{k_{11}[H] + k_{10}[S]}$$
(22)

Table S1. Most stable adsorption site, adsorption energy (E_{ads} , eV), and relative bond distances (d_{Co-X} , Å) of the surface species; the adsorption energies in the parentheses are without ZPE corrections (* own results in present work)

Species	E _{ads} (eV)	d _{co-c} (Å)	d _{co-0} (Å)
СН	-5.65* (-5.79)	1.873; 1.876; 1.877	
	-6.07 ^{3a} ; -5.85 ^{3b} ; -5.99 ⁴ ; -6.54 ⁵ ; 5.94 ^{6a} ; 6.68 ^{6b}	1.878 ⁴ ; 1.86 ^{6a} ; 1.88 ^{6b}	
CH ₂	-3.29* (-3.37)	1.962; 1.965; 2.025	
	-3.74 ^{3a} ; -4.11 ^{3b} ; -3.85 ⁴ ; -3.86 ⁵ ;	1.986 ⁴	
CH_3	-1.41* (-1.49)	2.183; 2.209; 2.222	
	-1.09 ^{3a} ; -2.09 ^{3b} ; -1.89 ⁴ ; -2.00 ⁵ ;	2.174 ⁴	
CH_4	0.02* (-0.04)		
СНО	-1.53* (-1.61)	1.880; 2.125	2.083; 0.186
СОН	-3.54* (-3.64)	1.861; 1.911; 1.917	
СНОН	-2.32* (-2.32)	1.978; 1.986; 2.065	
CH ₂ O	-0.19* (-0.23)	2.010	2.049; 2.073; 2.199
CH3O	-2.18* (-2.32)		2.028; 2.033; 2.034
CH₃OH	0.00* (-0.02)		2.300

Table S2. The adsorption energy ($E_{ads,}$ eV) and the relative bond distances (d_{Co-X_r} , Å) of the surface species, as well as the reaction energy ($E_{r,}$ eV) and the barrier energy ($E_{a,}$ eV) in the diffusion reaction of the surface species; the adsorption energies in the parentheses are without ZPE corrections

Species		_ <i>E</i> a	<u> </u>		
CH-hcp	-5.65 (-5.83)			1.873; 1.876; 1.877	
TS	-5.37 (-5.54)	0.28	0.19	1.817; 1.820	
CH-fcc	5.46 (-5.64)			1.877; 1.888; 1.890	
CH ₂ -hcp	-3.29 (-3.40)			1.962; 1.965; 2.025	
TS	-3.03 (-3.09)	0.26	0.02	1.934; 1.944	
CH ₂ -fc	3.27 (-3.37)			1.971; 1.977; 2.034	
CH₃-hcp	-1.42 (-1.50)			2.183; 2.209; 2.222	
TS	-1.22 (-1.31)	0.19	0.01	2.131; 2.204	
CH ₃ -fcc	1.41 (-1.50)			2.179; 2.196; 2.201	
CHO-1	-1.53 (-1.61)			1.912; 2.048	2.098; 2.193
TS	-1.41 (-1.46)	0.12	0.00	2.006; 2.049	2.010
CHO-2	1.53 (-1.61)			1.912; 2.048	2.098; 2.193
COH-1	-3.54 (-3.64)			1.803; 1.907; 2.024	
TS	-3.38 (-3.45)	0.16	0.14	1.827; 1.836	
COH-2	3.40 (-3.46)			1.857; 1.911; 1.960	
CH ₂ O-1	-0.19 (-0.23)			2.010	2.049; 2.073; 2.199
TS	0.13 (0.14)	0.32	0.00		
CH ₂ O-2	0.19 (-0.23)			2.010	2.049; 2.073; 2.199
CH ₃ O-1	-2.18 (-2.32)				2.028; 2.033; 2.034
TS	-1.93 (-2.11)	0.25	0.08		1.965; 1.969
CH ₃ O-2	-2.10 (-2.24)				2.028; 2.035; 2.040

Table S3. Computed adsorption energies (E_{ads} , eV), and the relevant bond distances (d, Å) of the IS, TS and FS for the reaction

~

	E _{ads}	d _{co-c}	d _{co-O}	d _{Co-H}	d _{c-o}	d _{c-H}	d _{o-H}
CO+H-t1	-1.40 (-1.60)	1.754		1.738; 1.751; 1.753	1.173		
TS1	1.31 (1.15)	1.794; 1.841; 1.946	1.936; 1.942	1.673; 1.689; 1.789			
C+O+H	0.02 (-0.21)	1.758; 1.787; 1.827	1.834; 1.890; 1.900	1.733; 1.734; 1.750			
CO+H-t2	-1.34 (-1.56)	1.759		1.709; 1.770; 1.772	1.173		
TS2	0.61 (0.53)	1.772; 2.023; 2.042			1.271		
СОН	-0.35 (-0.66)	1.861; 1.911; 1.917			1.351		0.978
TS3	0.07 (-0.16)	1.861			1.236	1.147	
СНО	-0.14 (-0.44)	1.880; 2.125	2.083; 0.186		1.321	1.109	
CHO+H-t1	-0.27 (-0.75)	1.881; 2.080	2.095; 2.207	1.676; 1.756; 1.829	1.319	1.109	
TS4	0.69 (0.27)	1.829; 1.875	1.959; 1.983; 2.018	1.612; 1.732		1.098	
CH+O+H	-0.57 (-1.01)	1.847; 1.860; 1.897	1.855; 1.870; 1.925	1.732; 1.743; 1.745		1.103	
CHO+H-t2	-0.11 (-0.58)	1.867; 2.184	2.414; 2.154	1.658; 1.763; ;1.845	1.315	1.110	
TS5	0.80 (0.45)	1.948; 2.039; 2.290		1.852; 1.863	1.309	1.138	
СНОН	0.12 (-0.45)	1.978; 1.986; 2.065		1.759	1.383	1.177	0.982
TS6	0.12 (-0.34)	1.887; 2.192	2.118; 2.173	1.559	1.324	1.105	
CH ₂ O	-0.04 (-0.65)	2.010	2.049; 2.073; 2.199		1.382	1.096; 1.100	
CH ₂ O+H-t1	-0.16 (-0.92)	2.031	2.035; 2.038	1.748; 1.763; 1.767	1.390	1.101; 1.103	
TS7	0.66 (-0.03)	1.932; 2.197	1.956; 1.964; 2.089	1.660; 1.746; 1.825		1.101; 1.111	
CH ₂ +O+H	-0.49 (-1.17)	1.931; 1.980; 2.020	1.856; 1.893; 1.900	1.692; 1.753; 1.784		1.102; 1.156	
$CH_2O+H-t2$	-0.12 (-0.89)	2.016	2.105; 2.106; 2.125	1.698; 1.747; 1.826		1.097; 1.099	
TS8	0.82 (0.17)	2.102	2.073	1.765; 1.809	1.379	1.104; 1.118	
CH ₂ OH	0.17 (-0.70)	2.104; 2.200	2.254		1.472	1.104; 1.121	0.979
CH ₂ O+H-t3	-0.14 (-0.93)	2.033	2.043; 2.043	1.683; 1.761; 1.762	1.385	1.102; 1.103	
TS9	0.24 (-0.51)	2.102	2.064; 2.067; 2.215	1.570	1.382	1.098; 1.100	
CH₃O	-0.71 (-1.64)		2.028; 2.033; 2.034		1.449	1.100; 1.100; 1.100	
CH₃O+H-t1	-0.83 (-1.93)		2.033; 2.034; 2.038	1.751; 1.763; 1.765	1.450	1.100; 1.100; 1.100	
TS10	0.61 (-0.37)		1.910; 1.919; 1.949	1.703; 1.773; 1.779		1.088; 1.090; 1.096	
CH ₃ +O+H	-0.86 (-1.85)	2.153; 2.206	1.848; 1.878; 1.964	1.710; 1.741; 1.798		1.106; 1.106; 1.117	
CH₃O+H-t2	-0.85 (-1.95)		2.026; 2.026; 2.048	1.745; 1.747 ;1.755	1.447	1.100; 1.100 ;1.100	
TS11	0.59 (-0.40)		2.054	1.700	1.449	1.101; 1.103; 1.105	
CH₃OH	-0.35 (-1.57)		2.300		1.453	1.098 ;1.102; 1.102	
TS12	0.11 (-0.82)	1.754; 2.265	1.849; 1.911; 2.018	1.665	1.175	1.099; 1.099; 1.103	
CH ₄ +O	-1.42 (-2.52)	1.755	1.848; 1.878; 1.964		1.175	1.096; 1.098; 1.098; 1.110	

via H-assisted pathway; the adsorption energies in the parentheses are without ZPE corrections

	Eads	d _{co-c}	d _{co-O}	d _{Co-H}	d _{C-O}	d _{O-H}
CO+H+OH	-1.42 (-1.52)	1.760	1.997; 2.049; 2.050	1.690; 1.776; 1.777	1.175	0.973
TS13	-0.69 (-0.59)	1.847; 1.955; 1.966	1.943; 1.951; 2.016	1.736; 1.754; 1.758	1.296	
COH+O+H	-0.75 (-0.76)	1.840; 1.906; 1.935	1.876; 1.905; 1.928	1.732; 1.755; 1.756	1.341	0.986
TS14	-0.14 (0.04)	1.854	1.928; 1.964; 1.998	1.716; 1.756; 1.766	1.196	
CHO+O+H	-0.41 (-0.37)	1.959; 2.146; 2.026	1.855; 1.892; 1.923	1.742; 1.748; 1.758	1.285	
TS15	-0.18 (-0.24)	1.914	2.042		1.190	0.983
СООН	-0.54 (-0.69)	1.928	2.071		1.272; 1.350	0.983
TS16	-0.24 (-0.23)	1.868; 1.917; 1.999	1.853; 1.893; 1.915	1.527	1.364	0.981
HCOH+O	-0.37 (-0.39)	1.943; 1.991; 2.117	1.860; 1.885; 1.907	1.785	1.378	0.982
TS17	0.50 (0.39)	1.940	2.126		1.262; 1.295	
CO ₂ +H	-0.47 (-0.60)	2.122; 2.265	2.203; 2.231	1.737; 1.764; 1.775	1.241; 1.244	
HCOH+OH+H	-0.45 (-0.68)	1.978; 1.986; 2.065		1.383	0.982	
TS18	0.31 (0.13)	1.858; 1.974; 2.071	2.140; 2.277		0.984	
CH+OH+OH+H	-1.05 (-1.25)	1.836; 1.872; 1.915	1.981; 2.059; 2.060		0.973	
TS19	0.42 (0.33)	2.066; 2.198; 2.228	1.918; 1.930; 2.233	1.409	0.981	
CH ₂ OH+O	-0.38 (-0.56)	2.245; 2.273; 2.311	1.842; 1.972; 1.999	1.452	0.980	
TS20	-0.44 (-0.60)	1.987; 2.024; 2.127	1.986	1.333	0.975	
HCO+H ₂ O	-0.69 (-0.86)	1.873; 2.144	2.125; 2.208; 2.343	1.327	0.976; 0.983	
TS21	0.12 (-0.11)	1.939; 2.121; 2.179		1.390	0.983	
CH₂OH(+OH)	-0.43 (-0.67)	2.165; 2.179	2.203	1.478	0.979	

Table S4. Computed adsorption energies (E_{ads} , eV), and the relevant bond distances (d, Å) of the IS, TS and FS for the reactions via OH-assisted pathway; the adsorption energies in the parentheses are without ZPE corrections

Table S5. Energy barrier E_a (eV) and reaction energy E_r (eV) as well as the rate constant k (483K) of CO hydrogenation in the H-assisted pathway on the Co(0001) surface

	Ea	Er	А	k
CO+H→TS1→C+O+H	2.71	1.42	5.52×10 ¹²	2.83×10 ⁻¹⁶
CO+H→TS2→COH	1.95	1.05	2.70×10 ¹³	1.20×10 ⁻⁷
CO+H→TS3→CHO	1.41	1.26	5.84×10 ¹²	1.11×10 ⁻²
CHO+H→TS4→CH+O+H	0.96	-0.30	4.91×10 ¹²	4.67×10 ²
СНО+Н→TS5→СНОН	1.07	0.39	1.31×10 ¹³	8.86×10 ²
CHO+H→TS6→CH ₂ O	0.39	0.23	9.35×10 ¹²	7.90×10 ⁸
$CH_2O+H\rightarrow TS7\rightarrow CH_2+O+H$	0.82	-0.33	7.80×10 ¹²	2.15×10 ⁴
$CH_2O+H\rightarrow TS8\rightarrow CH_2OH$	0.98	0.33	1.48×10 ¹³	8.73×10 ²
$CH_2O+H\rightarrow TS9\rightarrow CH_3O$	0.40	-0.55	1.51×10 ¹³	1.00×10 ⁹
$CH_{3}O+H\rightarrow TS10\rightarrow CH_{3}+O+H$	1.44	-0.03	1.04×10 ¹³	9.65×10 ⁻³
CH₃O+H→TS11→CH₃OH	1.42	0.48	1.93×1013	2.90×10 ⁻²
$CH_3+O+H\rightarrow TS12\rightarrow CH_4+O$	0.97	-0.56	1.54×10 ¹³	1.16×10 ³
$CH+H+CO\rightarrow TS\rightarrow CH_2+CO$	0.66	0.26	2.04×10 ¹³	2.63×10 ⁶
CH+H+CO→TS→CHCO+H	0.95	0.32	1.21×10 ¹³	1.47×10 ³
$CH_2+H+CO \rightarrow TS \rightarrow CH_3+CO$	0.70	-0.33	1.84×10 ¹³	9.04×10 ⁵
$CH_2+H+CO \rightarrow TS \rightarrow CH_2CO+$	0.99	0.45	9.28×10 ¹²	4.29×10 ²
Н				
$CH_3+H+CO \rightarrow TS \rightarrow CH_4+CO$	0.96	-0.42	1.79×10 ¹³	1.70×10 ³
$CH_3+H+CO\rightarrow TS\rightarrow CH_3CO+$	1.53	0.50	3.64×10 ¹²	3.90×10 ⁻⁴
Н				

Table S6: Barriers E_a (eV) and reaction energies E_r (eV) as well as the rate constant k (483K) of CO activation via OH-assisted pathway

	Ea	Er	А	k
CO+H+OH→TS13→COH+O+H	0.83	0.77	3.90×10 ¹²	8.85×10 ³
CO+H+OH→TS14→CHO+O+H	1.38	1.11	8.74×10 ¹²	3.43×10 ⁻²
CO+OH→TS15→COOH	1.24	0.88	7.86×10 ¹²	8.93×10 ⁻¹
COH+O+H→TS16→HCOH+O	0.51	0.37	7.81×10 ¹²	3.70×10 ⁷
COOH→TS17→CO ₂ +H	1.04	0.07	1.11×10 ¹³	1.54×10 ²
HCOH→TS18→CH+OH	0.76	-0.66	6.96×10 ¹²	8.10×10 ⁴
HCOH+OH+H→TS19→CH ₂ OH+O+H	0.87	0.07	1.44×10 ¹²	1.19×10 ⁴
НСОН+ОН+Н	0.01	-0.24	4.21×10 ¹²	3.31×10 ¹²
→TS20→HCO+H ₂ O+H				
HCOH+OH +H→TS21→CH ₂ OH+OH	0.57	0.02	1.26×10 ¹²	1.41×10 ⁷

Figure S1. Top (a) and side (b) reviews as well as possible adsorption sites of the hcp Co(0001) surface: top site (t), three-fold face-centered cubic site (fcc), three-fold hexagonal close packed site (hcp) and bridge site (b)

Figure S2. Top and side views of the relative surface species on the Co(0001) surface

S13

Figure S3. The geometries of the initial state and the final state as well as the transition state of the surface species in the diffusion reaction

Figure S4. The geometries of the initial state and the final state as well as the transition state for the reactions starting from CO+H in the H-assisted pathway

 $\mathsf{CHO+H} \to \mathsf{CHOH}$

 $\text{CHO+H} \rightarrow \text{CH}_2\text{O}$

Figure S5. The geometries of the initial state and the final state as well as the transition state for the reactions starting from CH_2O in the H-assisted pathway

 $\rm CH_3O \rightarrow \rm CH_3+O$

 $\rm CH_3 {+} O{+} H \rightarrow \rm CH_4 {+} O$

Figure S6. The geometries of the initial state and the final state as well as the transition state in the reaction of the coupling of CH_x (x=1-3) with H or CO

 $\mathsf{CH}_3\mathsf{CO}\text{+}\mathsf{H} \leftarrow \mathsf{CH}_3\text{+}\mathsf{CO}\text{+}\mathsf{H}$

 $\rm CH_3\text{+}\rm CO\text{+}\rm H \rightarrow \rm CH_4\text{+}\rm CO$

Figure S7. The geometries of the initial state and the final state as well as the transition state for the reactions starting from CO+OH in the OH-assisted pathway

 $\text{CO+OH} \rightarrow \text{COOH}$

 $\text{COOH} \rightarrow \text{CO}_2\text{+H}$

Figure S8. The geometries of the initial state and the final state as well as the transition state for the reactions starting from COH in the OH-assisted pathway

HCO+H₂O

TS CHOH+OH \rightarrow HCO+H₂O

CHOH+OH-t2

- 5 J. Cheng, X-Q. Gong, P. Hu, C. M. Lok, P. Ellis and S. French, J. Catal. 2008, 254, 285–295.
- 6 D. J. Klinke II, D. J. Dooling and L. J. Broadbelt, Surf. Sci. 1999, 425, 334-342.

¹ H. Eyring, J. Chem. Phys. 1935, 3, 107-115.

² J. M. Lu, S. Behtash, M. Faheem and A. Heyden, J. Catal. 2013, 305, 56-66.

³ H. Burghgraef, A. P. J. Jansen and R. A. van Santen, Surf. Sci. 1995, 324, 345-356.

⁴ X-Q. Gong, R. Raval and P. Hu, J. Chem. Phys. 2005, 122, 024711.