Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Tetronics/cyclodextrin-based hydrogels as catalyst-containing media for the hydroformylation of higher olefins

Mélanie Chevry, ^a Théodore Vanbésien, ^a Stéphane Menuel, ^a Eric Monflier, ^a and Frédéric Hapiot* ^a

^aUniv. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens, France.

E-mail: frederic.hapiot@univ-artois.fr

	Page
Materials and methods – Catalytic experiments – Recycling procedure – Procedure for the synthesis of HRh(CO)(TPPTS) ₃	2
Table S1	3
Table S2	4
Table S3	5
Table S4	6
Table S5	7
Table S6	8
Table S7	9
Table S8	10
Table S9	11
Table S10	12
Figure S1	13
Figure S2	14

Materials and methods

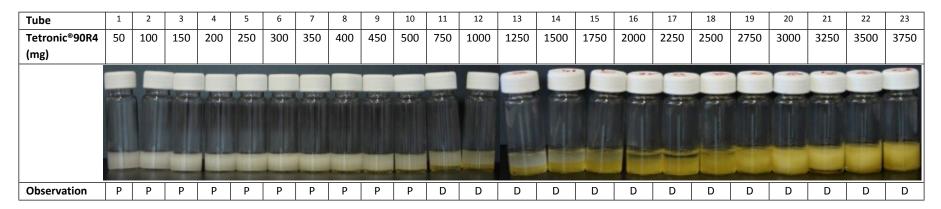
All chemicals were purchased from Acros, Strem or Aldrich Chemicals in their highest purity. NMR spectra were recorded on a Bruker DRX300 spectrometer operating at 300 MHz for ^1H nuclei and 75 MHz for ^{13}C nuclei. CDCl $_3$ (99.50% isotopic purity) were purchased from Eurisotop. GC-MS analysis were performed using a Shimadzu GC-17A gas chromatograph using a Varian capillary column (length 30 m, internal diameter 0.025 μm) and a Shimadzu GCMS-QP500 mass spectrometer. All the hydroformylation experiments were carried out in laboratory reactors from Parr Instrument Company (USA). To prevent oxidation of the catalyst precursors, the reaction mixture was transferred into the reactor using the standard Schlenk technique.

Catalytic experiments

In a typical experiment, $Rh(CO)_2(acac)$ (3 mg, 0.012 mmol) was degassed three times by vacuum- N_2 cycles and dissolved in a degassed mixture of Tetronic®90R4, α -CD and water (6 mL). The resulting solution was stirred at room temperature until all the rhodium complex was dissolved (2 h). 1-dodecene (275 mg, 1.63 mmol) was poured into the autoclave and N_2 -purged. The catalytic solution was then cannulated under nitrogen into the autoclave. Once the desired temperature was reached, the autoclave was pressurized under CO/H_2 (1/1) pressure (typically 50 bar) and the solution was vigorously stirred (2500 rpm). When the reaction was complete, the apparatus was allowed to cool down to room temperature and depressurized. The liquid products were cannulated under nitrogen into a flask while the catalyst-containing gel phase remained into the autoclave. The products were analyzed by 1H and 1G NMR experiments. All runs were performed at least twice in order to ensure reproducibility. The margin of error was <4%.

Recycling procedure

Once the products have been recovered, fresh substrate was added under nitrogen on the catalyst-containing gel. The autoclave was pressurized under CO/H₂ and the solution was vigorously stirred (2500 rpm). The procedure was repeated as needed.


Procedure for the synthesis of HRh(CO)(TPPTS)₃

In a Schlenk tube were dissolved 150 mg Rh(CO)₂(acac) (0.58 mmol) and 1.2 g TPPTS (2,6 mmol, 5 equiv.) in 3 mL degassed water. The mixture was stirred under H_2 pressure (1 bar) for 4 h. A green-yellow solution was obtained. 25 mL ethanol were then added and a yellow precipitate was obtained. The precipitate was filtrated under nitrogen atmosphere and rinsed three times with hot ethanol to eliminate unreacted products. The resulting HRh(CO)(TPPTS)₃ complex was dried under vacuum for 2 h. Yield: 73% (752 mg).

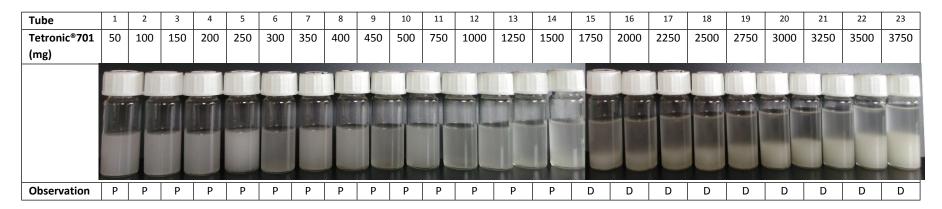
Table S1 Physico-chemical properties of Tetronic®90R4 and Tetronic®701.

	Tetronics®90R4	Tetronics®701
Mw (g/mol)	7200	3600
Viscosity (cp at 25°C)	3870	600
Density (g/ml at 25°C)	1.05	1.02

Table S2 Optical photos of Tetronic®90R4/water solutions as a function of the Tetronic®90R4 concentration in 5 mL water without α -CD at 80 °C. S: solution; P: Precipitate; D: Demixing.

Table S3 Optical photos of Tetronic®90R4/ α -CD/water solutions (870 mg α -CD, 6 mL water) as a function of the Tetronic®90R4 weight percentage at 25°C. P: Precipitate; G: Gel; D: Demixing.

Tube	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Tetronic ®90R4	50	100	150	200	250	300	350	400	450	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
(mg)																							
Observa tion	Р	Р	Р	Р	Р	Р	Р	Р	Р	G	G	G	G	G	G	G	G	G	G	G	G	G	G


Table S4 Optical photos of Tetronic®90R4/ α -CD/water solutions (870 mg α -CD, 6 mL water) as a function of the Tetronic®90R4 weight percentage at 80°C. S: Sol; G: Gel;

		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Tetronic																							
®90R4	50	100	150	200	250	300	350	400	450	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
(mg)																							
			-0				-15		The R	-													
					数 / 编							展		9			GOI TE			NAME OF TAXABLE PARTY.	I LOSSIE	NEWS !	DESCRIPTION OF THE PARTY OF THE
																				No. of Lot	THOUGH		100000
				(00)				10.1															
	250	18 San		THE WAY	1-767				1			4	1	1	1		1	1					
	U													1									
Observa tion	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S

Table S5 Optical photos of Tetronic®90R4/ α -CD/water solutions (870 mg α -CD, 6 mL water) as a function of the Tetronic®90R4 weight percentage after cooling down at 20°C the solutions depicted in Table S4. P: Precipitate; G: Gel; D: Demixing;

Tube	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Tetronic																							
®90R4	50	100	150	200	250	300	350	400	450	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
(mg)																							
Observa tion	Р	Р	Р	Р	Р	Р	Р	Р	Р	G	G	G	G	G	G	G	G	G	G	G	G	G	G

Table S6 Optical photos of Tetronic®701/water solutions as a function of the Tetronic®701 concentration in 6 mL water without α -CD at 80 °C. S: solution; P: Precipitate; D: Demixing.

Table S7 Optical photos of Tetronic®701/ α -CD/water solutions (870 mg α -CD, 6 mL water) as a function of the Tetronic®701 weight percentage at 25°C. P: Precipitate; G: Gel; D: Demixing.

Tube	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Tetronic																							
®701	50	100	150	200	250	300	350	400	450	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
(mg)																							
								A CONTRACTOR OF THE PARTY OF TH															
Observa tion	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	G	G	G	G	G	G	G	G	G	G

Table S8 Optical photos of Tetronic®701/ α -CD/water solutions (870 mg α -CD, 6 mL water) as a function of the Tetronic®701 weight percentage at 80°C. S: Sol; G: Gel.

Tube	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Tetronic																							
®701	50	100	150	200	250	300	350	400	450	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
(mg)																							
Observa tion	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S

Table S9 Optical photos of Tetronic®701/ α -CD/water solutions as a function of the Tetronic®701 weight percentage after cooling down the solutions obtained in Table S8 at 25°C. P: Precipitate; G: Gel; D: Demixing; 870 mg α -CD, 6 mL water.

Tube	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Tetronic																							
®701	50	100	150	200	250	300	350	400	450	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
(mg)																							
	1			1.50								DET	ACRES OF										
															THE REAL PROPERTY.								

Table S10 Variation of conversion, aldehyde selectivity and regioselectivity with the Tetronic®90R4 concentration in Rh-catalyzed hydroformylation of 1-dodecene.

Tetronic®90R4/H₂O (wt%)	conversion (%) ^b	aldehyde selectivity (%) ^b	l/b ^{b,c}	Alkene isomers (%)
1	25	73	2.3	27
4	29	83	2.5	17
10	36	92	2.5	8
25	67	92	2.4	8
30	75	93	2.5	7
35	81	99	2.4	<1
40	84	96	2.4	4
75	92	94	2.3	6

 $^{^{}a}$ Conditions: 1-dodecene (1.63 mmol), Rh(CO)₂(acac) (3 mg, 0.012 mmol), TPPTS (33 mg, 0.058 mmol), α-CD (870 mg, 0.90 mmol), 6 mL H₂O, 80 °C, 50 bar CO/H₂, 1 h. b Conversions and selectivities were determined by 1 H NMR. c linear/branched aldehydes ratio.

Figure S1. ³¹P NMR spectra of HRh(CO)(TPPTS)₃ in the sol phase under H₂ (1 bar) over time. a) t = 0; b) after 4 days.

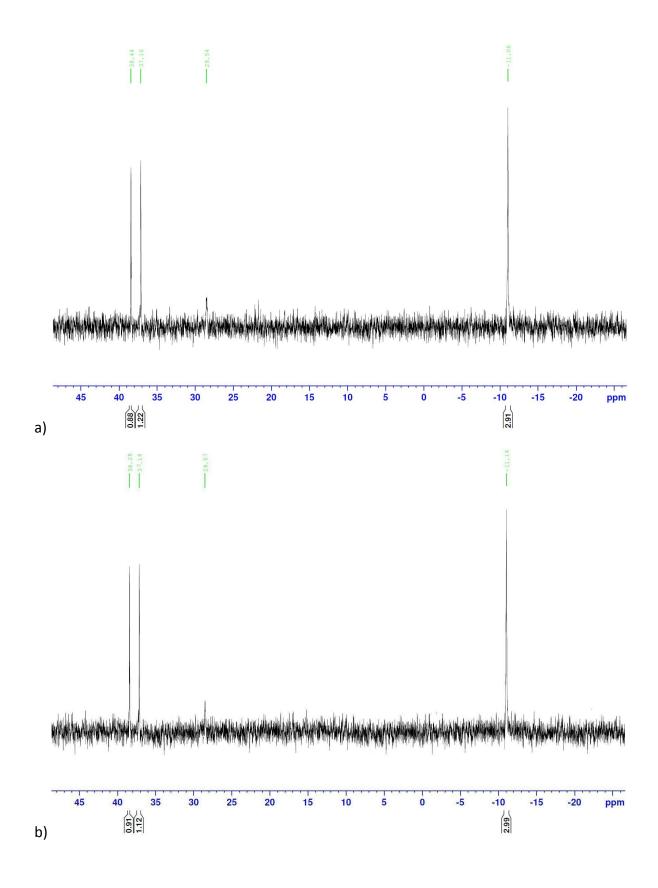
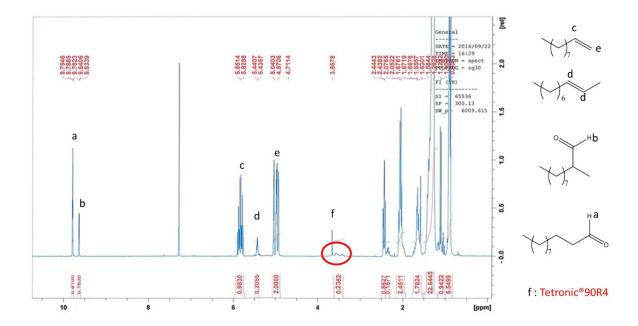



Figure S2. ¹H NMR spectrum of the organic phase after reaction.

