Yang, et al.Catalysis Science & TechnologySupporting Information

Hybrid TiO₂/Graphene Derivatives Nanocomposites: Is Functionalized Graphene Better than Pristine Graphene for Enhanced Photocatalytic Activity?

Yin-Cai Yang¹, Wei-Qing Huang¹*, Liang Xu^{2,1}, Wangyu Hu², P. Peng² and Gui-Fang Huang^{1#}

¹ Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China

² School of Materials Science and Engineering, Hunan University, Changsha 410082,

China

^{*.} Corresponding author. *E-mail addresses:* wqhuang@hnu.edu.cn

^{#.} Corresponding author. *E-mail address:* gfhuang@hnu.edu.cn

Fig. S1 (a), (b) and (c) for the simulated model of TiO_2/RGO , TiO_2/GRH and TiO_2/GR nanocomposites; top and bottom panels for top view of super cell and top view of primitive unit cell of $TiO_2/RGO(GRH, GR)$, respectively. (d) for the side view of primitive unit cell of TiO_2/GR nanocomposites. Light gray, red and black sphere represent Ti, O and C atoms, respectively. The atoms in the surface layer of $TiO_2(001)$ have a slightly movement, and the positive (negative) values represent the atom slightly move upwards (push downwards).

Fig. S2 Band structures for TiO_2/GR . The horizontal dashed line indicates the Fermi level.

Fig. S3 DOS and PDOS for the TiO_2/GR nanocomposites. Top, middle and bottom panels for DOS, PDOS of TiO_2 component and GR component of TiO_2/GR , respectively. The Fermi level is set to zero.

Fig. S4 Maps of the electron and hole density distributions for the HOB and LUB with an isovalue of 0.003 e/Å³ for the hybrid TiO₂/GR. Here, HOB and LUB denote the highest-occupied and lowest-unoccupied bands, respectively. A type-I heterojunction form on TiO₂/GR nanocomposites.

Fig. S5 Charge distribution map of (a) TiO_2/GR , (b) pure $TiO_2(001)$, (c) monolayer RGO and (d) monolayer GRH with a isovalue of 0.4 e/Å³. Light gray, red, black, and white sphere represent Ti, O, C and H atoms, respectively.