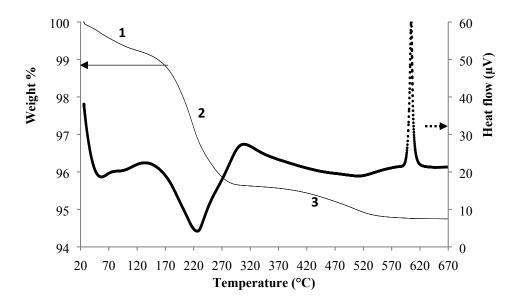
Elucidating and exploiting the chemistry of Keggin heteropolyacids in the methanolto-DME conversion: enabling the bulk reaction thanks to *operando* Raman


Josefine Schnee, Eric M. Gaigneaux*

Institute of Condensed Matter and Nanosciences (IMCN) – MOlecules Solids and reactiviTy (MOST) – Université catholique de Louvain (UCL). Place Louis Pasteur 1, box L4.01.09 1348 Louvain-la-Neuve, Belgium.

*Corresponding author. E-mail address: eric.gaigneaux@uclouvain.be.

Supplementary Information

Thermogravimetric and thermodifferential profiles (under air, 10 °C/min) of $H_3PW_{12}O_{40}$.x H_2O (Sigma-Aldrich) after 1 night under vacuum (<5000 Pa) at room temperature.

Fig. S1. Thermogravimetric (full line) and thermodifferential (dotted line) profiles (under air, 10 °C/min) of H₃PW₁₂O₄₀.xH₂O (Sigma-Aldrich) after 1 night under vacuum (<5000 Pa) at room temperature.

These profiles allow:

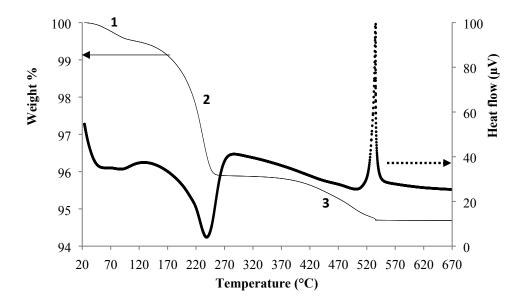
1) Determining the number of moles of crystallisation water per mole of H₃PW₁₂O₄₀ Keggin units.

The powder contains 0.7% of physisorbed water (weight loss 1 on the thermogravimetric profile) and 3.7% of crystallisation water (weight loss 2 on the thermogravimetric profile).

If MM = molar mass [g/mol] and n = number of moles, the number of crystallisation water molecules per Keggin unit (x) in $H_3PW_{12}O_{40}.xH_2O$ is determined as follows:

MM of $H_3PW_{12}O_{40}.xH_2O = MM$ of $H_3PW_{12}O_{40} + n$ of crystallisation $H_2O^*MM H_2O + n$ of physisorbed $H_2O^*MM H_2O$

= $2880.05 + x^*18 + y^*18 = 2880.05 + 0.037^*MM$ of $H_3PW_{12}O_{40}.xH_2O + 0.007^*MM$ of $H_3PW_{12}O_{40}.xH_2O$


x = (0.037*3012.6) / 18 = 6.2 mol of crystallisation water per mol of H₃PW₁₂O₄₀ Keggin units.

This value of x has been rounded to 6.

2) Determining the temperature at which H₃PW₁₂O₄₀ has to be pre-treated in order to completely remove its crystallisation water but without losing its acidic protons.

320 °C has been chosen as the pre-treatment temperature. Indeed, at 320 °C, weight loss 2 on the thermogravimetric profile (related to the loss of crystallisation water) is complete while weight loss 3 (related to the loss of the acidic protons in the form of water) has not yet started. On the thermodifferential profile, the endothermic peak related to weight loss 2 is also complete at 320 °C.

Thermogravimetric and thermodifferential profiles (under air, 10 °C/min) of $H_4SiW_{12}O_{40}$.x H_2O (Sigma-Aldrich) after 1 night under vacuum (<5000 Pa) at room temperature.

Fig. S2. Thermogravimetric (full line) and thermodifferential (dotted line) profiles (under air, 10 °C/min) of H₄SiW₁₂O₄₀.xH₂O (Sigma-Aldrich) after 1 night under vacuum (<5000 Pa) at room temperature.

These profiles allow:

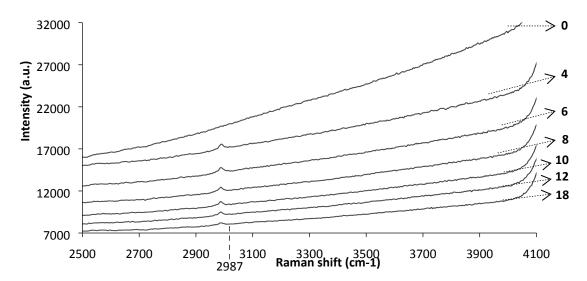
1) Determining the number of moles of crystallisation water per mole of H₄SiW₁₂O₄₀ Keggin units.

The powder contains 0.4% of physisorbed water (weight loss 1 on the thermogravimetric profile) and 3.6% of crystallisation water (weight loss 2 on the thermogravimetric profile).

If MM = molar mass [g/mol] and n = number of moles, the number of crystallisation water molecules per Keggin unit (x) in $H_4SiW_{12}O_{40}.xH_2O$ is determined as follows:

MM of $H_4SiW_{12}O_{40}.xH_2O = MM$ of $H_4SiW_{12}O_{40} + n$ of crystallisation $H_2O^*MM H_2O + n$ of physisorbed $H_2O^*MM H_2O$

= 2878.17 + x*18 + y*18 = 2878.17 + 0.036*MM of $H_4SiW_{12}O_{40}.xH_2O$ + 0.004*MM of $H_4SiW_{12}O_{40}.xH_2O$


= 2878.17 / (1 - 0.036 - 0.004) = 2998.1 g/mol.

x = (0.036*2998.1) / 18 = 6 mol of crystallisation water per mol of H₄SiW₁₂O₄₀ Keggin units.

2) Determining the temperature at which H₄SiW₁₂O₄₀ has to be pre-treated in order to completely remove its crystallisation water but without losing its acidic protons.

300 °C has been chosen as the pre-treatment temperature. Indeed, at 300 °C, weight loss 2 on the thermogravimetric profile (related to the loss of crystallisation water) is complete while weight loss 3 (related to the loss of the acidic protons in the form of water) has not yet started. On the thermodifferential profile, the endothermic peak related to weight loss 2 is also complete at 300 °C.

Raman spectra as a function of time in the region from 2500 to 4000 cm⁻¹ of HPW12.nH₂O (with 3 < n < 6) at 150 °C upon exposure to a flow of methanol (10 vol.% in nitrogen).

Fig. S3. Raman spectra of HPW12.nH₂O (with 3<n<6) at 150 °C upon exposure to a flow of methanol (10 vol.% in nitrogen) in the region from 2500 to 4000 cm⁻¹ characteristic of C-H and O-H stretches.

A peak at 2987 cm⁻¹ attributed to the symmetric methyl stretch²¹ appears as soon as HPW12 gets exposed to methanol, reflecting the latter's adsorption onto the catalyst (not possible to distinguish between surface adsorption and adsorption within the bulk).