Supporting Information

Nitrogen-doped carbon nanotubes as efficient catalysts for isobutane

dehydrogenation

Jiali Mu,^a Liam John France,^a Baoan Liu,^a Junjun Shi,^a Jinxing Long,^a LuFeng Lv,^{*b} Xuehui Li^{*a}

- ^a School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou 510640, PR China.
- Email: cexhli@scut.edu.cn
- ^b Sinopec Research Institute of Petroleum Processing, Beijing 100083, PR China Email: lvlf.ripp@sinopec.com

Fig. S1 Scanning transmission electron microscopy (STEM) elemental mapping of oMWCNTs: a) High angle annular dark-field (HAADF) showing the mapping area, b) overlay map of C and O, and c-d) elemental mapping for C and O elements respectively.

Fig. S2 Scanning transmission electron microscopy (STEM) elemental mapping of N_{13} -oMWCNTs: a) High angle annular dark-field (HAADF) showing the mapping area, b) overlay map of C, O and N, and c-e) elemental mapping for C, O and N elements, respectively.

Table S1 Textural properties of the catalysts.

Samples	BET surface area	Pore volume
	(m² g ⁻¹)	(cm ³ g ⁻¹)
pristine MWCNTs	134	0.55
oMWCNTs	157	0.74
N ₅ -oMWCNTs	185	0.94
N ₁₀ -oMWCNTs	181	0.83
N ₁₃ -oMWCNTs	185	0.82
N ₁₅ -oMWCNTs	175	0.82
N ₂₀ -oMWCNTs	178	0.92

Fig. S3 Nitrogen adsorption-desorption isotherms and pore size distribution of oMWCNTs and N₁₃-oMWCNTs.

Fig. S4 (A) FTIR spectra – 400-4000 cm⁻¹ (B) FTIR spectra – 1500-2200 cm⁻¹ of (a) pristine MWCNTs, (b) oMWCNTs, (c)-(f) N_x -MWCNTs catalysts (where x represent 5, 10, 13, 15, 20).

Fig. S5 XRD patterns of (a) pristine MWCNTs, (b) oMWCNTs, (c)-(f) N_x-MWCNTs catalysts (where x represent 5, 10, 13, 15, 20).

Table S2 Textural properties of catalysts after 12 h reaction.

Samples	BET surface area	Pore volume	
	(m² g ⁻¹)	(cm ³ g ⁻¹)	
oMWCNTs	127	0.87	
N ₅ -oMWCNTs	132	0.83	
N ₁₃ -oMWCNTs	104	0.90	
N ₂₀ -oMWCNTs	128	0.80	

Fig. S6 Deconvoluted Raman spectra of (a) oMWCNTs and (b)-(d) N_x-oMWCNTs catalysts (x represent 5-20) after 12 h reaction.

Fig. S7 (a) XPS survey spectra of different catalysts after 12 h reaction. (b) Atomic percentage of oxygen (blue) and nitrogen (red). High-resolution (c) C1s, (d) N1s and (e) O1s spectra.

Fig. S8 Catalytic performance of the as-synthesized oMWCNTs and N_x-oMWNCTs catalysts for the DDH reaction. Reaction conditions: T=600 °C, GHSV = 3.0 L g⁻¹ h⁻¹. V_{*i*-C4H10} / V_{N2} =1:1.

Fig. S9 The influence of reaction temperature on the activity of N₁₃-oMWCNTs catalyzed DDH reaction. Reaction conditions: $V_{i-C4H10} / V_{N2}$ =1:1, GHSV = 3.0 L g⁻¹ h⁻¹.

Fig. S10 Thermodynamic equilibrium conversion according to reference¹ (black) and experimentally determined conversion of N_{13} -oMWCNTs at different temperature (red).

Reaction conditions: V $_{\it i-C4H10}$ / V $_{N2}$ =1:1, GHSV = 3.0 L g $^{-1}$ h $^{-1}.$

Fig. S11 The influence of gas flow rate on the activity of N₁₃-oMWCNTs catalyzed DDH reaction. Reaction conditions: T=630 °C, V $_{i-C4H10}$: V $_{N2}$ = 2.5:2.5~10:10 mL min⁻¹.

Fig. S12 *i*-C₄H₁₀ and *i*-C₄H₈ TPD profiles of oMWCNTs and N_x-oMWCNTs catalysts before reaction.

Refrences

1 B. M. Wechhuysen and R. A. Schoonheydt, Catal. Today, 1999, 51, 223-232.