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Synthetic procedure of ligand 1 

Scheme S1. Synthetic procedure to carbene precursor 1. i) 1H-imidazole, KOH, THF, reflux, 12 h; ii) Ethyl Bromoacetate, 
anhydrous THF, reflux, 12 h; iii) KOH, H2O/iPrOH=1/3, reflux, 5 h. 

Synthesis of A

Potassium hydroxide (40 mmol, 2.4 g) was added into a 250 ml round bottom flask containing a 

solution of 1H-imidazole (20 mmol, 1.4 g) in THF. The mixture was refluxed for 2 hours, resulting in 

the formation of potassium imidazolide. Subsequently, 2-chloromethyl pyridine hydrochloride (20 

mmol, 3.2 g) was added and refluxed overnight. After cooling to room temperature, violates was 

removed using a rotavapor. The residue was dissolved in water and extracted with 

dichloromethane. The organic layer was dried using anhydrous sodium sulfate, concentrated and 

purified via flash chromatography (methanol/DCM=1/15) to give a brown solid. Yield: 66 %, 2.1 g. 

The spectra data is consistent with reported literature[S1]. 1H NMR (500 MHz, CDCl3, 25 ℃) δ= 8.58 

(s, 1H, NCHarom), 7.66 (t, J = 7.6 Hz, 1H, CHarom), 7.61 (s, 1H, CHarom), 7.23 (s, 1H, CHarom), 7.10 (s, 1H, 
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CHimi), 6.99 (s, 1H, CHimi), 6.95 (d, J = 7.7 Hz, 1H, CHarom), 5.24 (s, 2H, -CCH2N-). 13C NMR (125 MHz, 

CDCl3, 25℃) δ= 206.97, 156.11, 149.66, 137.62, 137.31, 129.83, 123.02, 121.18, 119.49, 52.48, 

Synthesis of B

A mixture of A (8.8 mmol, 1.4 g) and ethyl bromoacetate (8.8 mmol, 1.5 g) in dry THF was heated at 

70 °C overnight to give an off-white precipitate. The solid was collected, washed 3 times with THF 

and dried under vacuum. Yield: 2.4 g, 83 %. 1H NMR (500 MHz, [d6]DMSO, 25 ℃) δ= 9.30 (s, 1H, 

NCHimiN), 8.56 (d, J = 4.5 Hz, 1H, NCHarom), 7.90 (td, J = 7.7, 1.7 Hz, 1H, CHarom), 7.83 (s, 1H, CHimi), 

7.78 (s, 1H, CHimi), 7.50 (d, J = 7.8 Hz, 1H, CHarom ), 7.42 (dd, J = 7.3, 5.0 Hz, 1H, CHarom), 5.65 (s, 2H, -

NCH2C=O), 5.29 (s, 2H, -CCH2N-), 4.22 (q, J = 7.1 Hz, 2H, -CH2CH3), 1.24 (t, J = 7.1 Hz, 3H, -CH3). 13C 

NMR (125 MHz, [d6]DMSO, 25 ℃) δ= 167.27, 153.87, 150.12, 138.46, 138.07, 124.34, 124.23, 

123.44, 123.05, 62.39, 53.63, 50.11, 14.37.

Synthesis of 1

A solution containing B (1 g, 3.07 mmol) and potassium hydroxide in H2O/iPrOH (3/1) was refluxed 

for 5 h. After cooling to room temperature, the volatile was evaporated under vacuum. The residue 

was redissolved in methanol and filtered. The filtrate was dried. Subsequent recrystallization with 

MeOH/ethyl acetate afforded 1 as a white powder. Yield: 660 mg, 99%. 1H NMR (500 MHz, 

[d6]DMSO, 25 ℃) :δ=9.18 (s, 1H, NCHimiN), 8.56 (d, J = 4.7 Hz, 1H, CCHaromN), 7.88 (td, J = 7.7, 1.8 Hz, 

1H, CHarom), 7.66 (s, 1H, CHimi), 7.61 (s, 1H, CHimi), 7.46 (d, J = 7.8 Hz, 1H, CHarom), 7.40 (dd, J = 6.8, 

4.9 Hz, 1H, CHarom), 5.56 (s, 2H, NCH2N), 4.46 (s, 2H, NCH2C). 13C NMR (125 MHz, [d6]DMSO, 25 ℃ ): 

δ=166.29, 154.34, 150.0, 138.02, 137.58, 124.14, 122.90, 122.11, 53.44, 53.36. 
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Figure S1. 1H-NMR spectrum of compound A in CDCl3. 

Figure S2. 13C-NMR spectrum of compound A in CDCl3. 
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Fi

gure S3. 1H-NMR spectrum of compound B in DMSO-d6.

Figure S4. 13C-NMR spectrum of compound B in DMSO-d6. 
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Figure S5. 1H-NMR spectrum of ligand 1 in DMSO-d6. 

Figure S6. 13C-NMR spectrum of ligand 1 in DMSO-d6. 
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Figure S7. 1H-NMR spectrum of complex 2 in DMSO-d6. 

Figure S8. 13C-NMR spectrum of complex 2 in DMSO-d6.
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Figure S9. 1H-NMR spectrum of complex 3 in CD3OD.

Figure S10. 13C-NMR spectrum of complex 3 in CD3OD.
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Figure S11. H-H COSY NMR spectrum of complex 3 in CD3OD.

Figure S12. FT-IR spectrum of complex 2 ranging from 400 to 4000 cm-1 at 298 K.
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Figure S13. FT-IR spectrum of complex 3 ranging from 400 to 4000 cm-1 at 298 K. 

Figure S14. HR-MS (ESI) of complex 2 in positive mode with methanol as solvent.
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Figure S15. HR-MS (ESI) of complex 3 in positive mode with methanol as solvent.

Figure S16. UV-Vis spectra of Ru complex 2 in pH 1 HNO3 aqueous solution (blue), in pH 7 phosphate buffers (0.1 M) 

(red) and in acetonitrile solution (black).
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Figure S17. UV-Vis spectra of Ru complex 2 in HNO3 aqueous solution (pH 1.0) over a 180 min period.

Figure S18. UV-Vis spectra of Ru complex 3 in phosphate buffer solution (pH 7, 0.1 M) over a 180 min period.
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Figure S19. (Top) Absorbance changes (360 nm) at various concentration of 2+; conditions: initial [CeIV] = 3.2 mM, 

pH 1 HNO3. (Bottom) Absorbance changes (360 nm) at various concentration of [CeIV] in the presence of 2+. 

conditions: initial [2] = 0.05 mM, pH 1 HNO3. 
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Figure S20. (Left) Absorbance changes (360 nm) at various concentration of 3; conditions: initial [CeIV] = 3.2 mM, pH 

1 HNO3. (Right) Absorbance changes (360 nm) at various concentration of [CeIV] in the presence of 3; conditions: 

initial [3] = 0.04 mM, pH 1 HNO3.
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Figure S21. Cyclic voltagram of complexes (a) 2+, 3 and background; (b) 2+ and (c) 3 in pH 1 HNO3 aqueous solution, 

respectively. 
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Figure S22. DPV of complex 2+ (0.1 mM) in (top) pH 1 aqueous solution (adjusted by HNO3) and (bottom) pH 7 

phosphate buffer solution and Britton-Robinson buffer (0.1 M). The broad and weak peaks appearing at less than 

0.7 V vs. NHE are attributed to impurities in the electrolytes.
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Figure S23. DPV of complex 3 (0.1 mM) in pH 1 aqueous solution (adjusted by HNO3) and pH 1.95 Britton-Robinson 

buffer. Shoulder appearing at around 0.45 V is attributed to impurities in electrolytes.
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Figure S24. Differential Pulse Voltammetry (DPV) traces in the range between pH 1.5 and 9.0 for the construction of 

Pourbaix diagram of complex 3. Experimental Conditions: 0.1 mM 3, 0.1 M Britton-Robinson buffer solution. the pH 

of the solution was changed by addition of 0.1 mM NaOH aqueous solution. 3 mm diameter glassy carbon disk 

working electrode (polished between scans), Pt wire counter electrode and SSCE reference electrode. Inset: the 

enlarged part from 0.2 to 1.2 V vs. NHE.
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Figure S25. DPV of 3 (0.1 mM) in phosphate buffer aqueous solution (pH 7, 0.1 M), at a scan rate 100 mV/s. with 

PS1 as a reference.
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Figure S26. (Top) Detection of [RuIV = O]+ derived from 3 (0.125 mM) in phosphate buffer solution (pH 7) by addition 

of (a) 0.5 equiv. and (b) 1.5 equiv. NaIO4. (Bottom) Experimental (red) and calculated (blue) Isotope peaks of [RuIV = 

O]+.
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Figure S27. Chemical structure of PS1 and PS2.

Figure S28. ESI-MS (positive ion mode) of a mixture of complex 3 (0.25 mM), PS2 (12 equiv.) and Na2S2O8 (800 

equiv.) before illumination in pH 7 phosphate buffer. Peak marked with * is assigned to PS2, [M-2Cl]2+ (calculated 

m/z = 357.07643). Peak marked with ∆ is assigned to [3-Cl]+, (calculated m/z = 489.05345). 
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Table S1. Overview of different WOCs capable of initiating photo-induced water oxidation[a]
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Entry WOCs Onset Potential (v) TONs[b] Ref.

1 3 1.21 273[c]

2 3 1.21 33[d]

This work

3 2 1.35 10[c] This work

4 Ru(pdc)(pic)3 1.26 62[c] S2

5 Ru(hqc)(pic)3 1.05 42[c]

6 Ru(hqc)(pic)3 1.05 <5[d]

S3

7 Ru(bpc)(pic)3 >1.35 NR[e] S4

8 [Ru2(bcpPz)(pic)6]+ 1.30 92.5[c] S5

9 Ru2Co-(H2O)4 1.20 16[d] S6

10 Ru(hpbc)(pic)3 1.24 200[c] S7

11 [Ru(H2bcbPa)(pic)6]2+ 1.20 415[c] S8

[a] All the experiments were carried out in neutral phosphate buffer aqueous solution; onset potential is 
reported vs. NHE; [b] TON=nO2/nmetal center. [c] using PS2. [d] using PS1. [e] NR = not reported.



                

Figure S29. Molecular structures of Ru complexes in Table S1.
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Figure S30. Calculated structures of complex 2+ ([Ru(NCNHCO)(terpy)]+) .

Computational details. The geometry optimizations in the present study were performed using the 

Gaussian 09[S9] package and the B3LYP[S10] functional. To complex 2+, the 6-31G(d,p) basis set was 

applied for the C,N, O, H elements and the SDD[S11] pseudopotential for Ru.

Table S2. Cartesian coordinates for 2+ ([Ru(NCNHCO)(terpy)]+).

Coordinates(Angstroms)Center 

Number

Atomic 

Number

Atomic 

Type X Y Z

1 6 0 -2.124672 -0.058255 2.225567

2 6 0 -2.583274 -0.454209 3.483932

3 6 0 -1.710425 -1.023734 4.407123

4 6 0 -0.379064 -1.182685 4.033768

5 6 0 0.009878 -0.786739 2.760574

6 7 0 -0.829031 -0.238106 1.850049

7 1 0 -2.061319 -1.32927 5.387246

8 1 0 -3.627362 -0.303512 3.737605

9 1 0 0.355149 -1.609845 4.70795

10 1 0 1.036442 -0.905544 2.439205

11 6 0 -3.087804 0.689372 1.321129

12 1 0 -4.095611 0.59113 1.728182
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13 1 0 -2.832524 1.757358 1.356751

14 6 0 -4.256501 0.193448 -0.880309

15 6 0 -1.988259 0.041326 -0.793224

16 1 0 -5.255172 0.345892 -0.502208

17 6 0 -3.810323 -0.073031 -2.133459

18 1 0 -4.350034 -0.210717 -3.057159

19 7 0 -3.124092 0.251368 -0.067833

20 7 0 -2.422384 -0.164489 -2.063298

21 6 0 -1.54728 -0.505286 -3.192872

22 1 0 -2.043115 -0.190226 -4.11062

23 1 0 -1.430727 -1.595513 -3.235537

24 6 0 -0.12159 0.113696 -3.221148

25 8 0 0.525664 0.321095 -2.111367

26 8 0 0.340842 0.300835 -4.33562

27 6 0 1.748962 -2.22033 -0.137629

28 6 0 -0.421011 -3.013369 -0.490107

29 6 0 2.251806 -3.520883 -0.225487

30 6 0 0.023506 -4.327481 -0.586848

31 1 0 -1.471084 -2.764991 -0.591215

32 1 0 3.315125 -3.697747 -0.114669

33 1 0 -0.690018 -5.124035 -0.766253

34 6 0 2.50978 1.314261 0.355947

35 6 0 2.603183 -1.036927 0.10333

36 6 0 3.903457 1.386981 0.431972

37 6 0 3.999247 -1.01694 0.168618

38 1 0 4.410668 2.339715 0.524785

39 1 0 4.578771 -1.925589 0.057476

40 6 0 1.570855 2.457028 0.311959

41 6 0 -0.618467 3.159113 -0.073748

42 6 0 1.985058 3.78339 0.455128

43 6 0 -0.26386 4.498909 0.046427

44 1 0 -1.635377 2.870677 -0.311184
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45 1 0 3.026133 4.006261 0.656386

46 1 0 -1.016628 5.26817 -0.084997

47 7 0 0.405189 -1.971544 -0.274776

48 7 0 1.905317 0.112427 0.241803

49 6 0 1.387196 -4.586879 -0.455533

50 1 0 1.771245 -5.598796 -0.529296

51 6 0 4.643846 0.206747 0.351449

52 1 0 5.726759 0.24452 0.401303

53 6 0 1.062934 4.817799 0.327675

54 1 0 1.377963 5.850484 0.433696

55 7 0 0.25633 2.147613 0.071796

56 44 0 -0.092811 0.066212 -0.145935
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