Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supporting information

High improvement of visible-light photocatalytic H₂-evolution based

on cocatalyst-free Zn_{0.5}Cd_{0.5}S synthesized by a two-step process

Cong-Cong Shen, Ya-Nan Liu, Xiao Zhou, Hong-Li Guo, Zhi-Wei Zhao, Kuang Liang and An-Wu Xu,*

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at

Microscale, Department of chemistry, University of Science and Technology of China, Hefei, 230026,

China

Fig. S1 Pictures of dispersed ZnCdS-C, ZnCdS-H and ZnCdS-CH samples at 0 min, 1 min, 5 min and 15 min. In each picture, ZnCdS-C, ZnCdS-H and ZnCdS-CH samples are placed in left bottle, middle bottle and right bottle, respectively. The experiment conditions for all samples are the same.

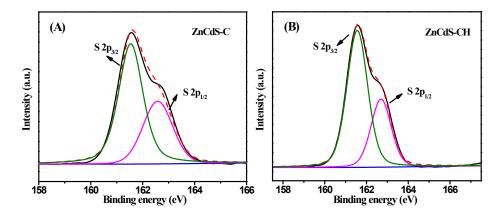


Fig. S2 High-resolution XPS spectra of S 2p for ZnCdS-C (A) and ZnCdS-CH (B)

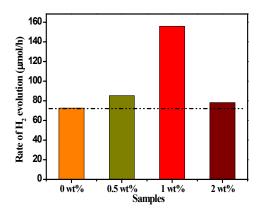


Fig. S3 Comparison of photocatalytic H₂ production rates over ZnCdS-C sample with different Pt loading (wt %)

under visible-light irradiation (\geq 420 nm).

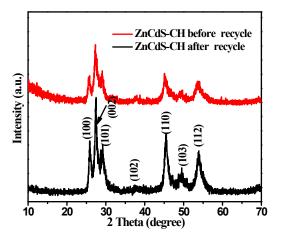


Fig. S4 Comparison of ZnCdS-CH samples before and after recycle.

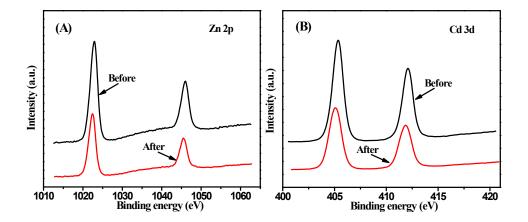


Fig. S5 High-resolution XPS spectra of Zn 2p and Cd 3d for ZnCdS-CH samples before and after recycle study.