Supporting information

Figure S1. (a) Powder XRD pattern of precursor heated at 600 °C at N_2 atm showing formation of MoO₂ (JCPDS no. 86-0135) and Mo(PO₃)₃ (JCPDS no. 82-1031). (b) PXRD pattern of MoP synthesized at 850 °C in H₂ atmosphere.

Figure S2. FTIR spectrum of the composites.

Figure S3. Raman Spectrum of the composites showing graphene signature Raman bands.

Figure S4: TEM image of anilinium ammonium molybdate complex.

Figure S5. TEM micrographs of (a-c) rGO-A-MoP and (d-f) rGO-C-MoP

Figure S6. EDAX pattern of rGO-A-MoP composite showing the presence of Mo and P.

Figure S7. Magnified LSV curve of rGO-A-MoP in 0.5 M H_2SO_4 showing one reduction step before hydrogen evolution.

Electrochemically active surface area (ECSA) analysis:

The electrochemically active surface area (ECSA) for the composites has been calculated from the cyclic voltammogram in the potential range of 0.05 V - 0.45 V vs. RHE where no redox reactions take place.

We have calculated the double layer capacitance (C_{dl}) for the composite at different mass loadings. We used specific capacitance of 40 μ F cm⁻² (a moderate value as reported in a recent report²) to calculate ECSA for the electrodes. Therefore the electrochemically active surface area (A_{ECSA}) can be calculated from the below equation.

Figure S8. Cyclic voltammogram of the composites in the potential range of 0.05-0.45 V vs. RHE at different scan rates (5, 10, 15, 25, 50, 75 and 100 mV/s) at different mass loading. (a-f) rGO-A-MoP, (g) rGO-C-MoP with mass loading of 1.6 mg/cm², (h, i) Current density difference ($\Delta j = ja-jc$) at 0.25 V vs. RHE plotted against scan rate. The slope of the linear fit is equal to the half of the specific capacitance (C_{dl}).

System	Reference	Current density mA-cm ⁻²	Tafel slope mV/dec	Mass loading mg-cm ⁻²
rGO-A-MoP	Our work	10@152 mV 20@177 mV	88	1.6
Graphite-MoP	Applied Catal. A: Gen. 2015, 490 (25), 101– 107	10@260 mV	63	0.64
МоР	J. Mater. Chem. A,2015, 3,4368–4373	10@150 mV	50	0.1
Amorphous MoP	Chem. Mater. 2014, 26, 4826–4831	10@110 mV 20@140 mV	45	1.0
МоР	Energy Environ. Sci.,2014, 7,2624–2629	10@135 mV	54	0.86
МоР	Chem. Commun., 2014, 50, 1168311685	10@246 mV	60	0.071
МоР	Adv. Mater. 2014, 26, 5702–5707	10@125 mV 100@271 mV	54	0.36
FeP	Nanoscale, 2015, 7, 4400-4405	10@122 mV	67	0.28
CoP/CNT	Angew. Chem. Int. Ed. 2014, 53, 6710–6714	10@122 mV	54	0.28
rGO-MoS₂	J. Am. Chem. Soc. 2011,	10@~150 mV	41	0.28

Table S1. Comparison chart of the electrocatalytic activity of our composite and other reports.

	133, 7296–7299			
Ni5P4-Ni2P	Angew. Chem. Int. Ed.	10@120 mV	79	68.2
Ni5P4-Ni2P	2015, 54, 8188 –8192			
Ni5P4-Ni2P				
FeP	ACS Nano 2014 , 8, 11101–11107	10@50 mV	37	1
Ni2P	J. Am. Chem. Soc. 2013,	20@130 mV	46, 81	1
	133, 9207-9270	100@180 mV		
FeP	Angew. Chemie Int. Ed.	10@55 mV	38	3.2
	2014 , <i>53</i> , 12855–12859	100@127 mV		
СоР	Angew. Chemie Int. Ed. 2014 , 53, 5427–5430	20@85 mV	50	2
МоР	Adv. Mater. 2014 , 26, 5702–5707	10@125 mV	54	0.36
		100@200 mV		
Ni ₅ P ₄	J. Mater. Chem. A 2014 , 3, 1656–1665	10@118 mV	42	1.99
Cu3P	Angew. Chemie Int. Ed.	10@ 143 mV	67	15.2
	2014, 53, 9577-9581	100@ 276 mV		
Mo2C	Energy Environ.	60 at 200 mV	53	0.21
Aniline complex	Sci.,2014, 7,387–392	(rod)		
method		21 at 200 mV		
		(flaky)		
		7.3 at 200 mV		
		(Bulky)		
		1.2 at 200mV		

		(commerc)		
Mo2C graphene	Chem. Commun., 2014, 50, 1313513137	10@130 mV	57, 76	
Mo2C N-doped CNT	J. Mater. Chem. A 2015 , 3, 5783–5788	10@147 mV	71	3
Mo2C	Angew. Chemie - Int. Ed. 2014 , 53, 6407– 6410	1@205 mV 3@250 mV	120	0.28
Mo2C/CNT	Energy Environ. Sci. 2013 , 6, 943	1 @ 63 mV	55	2
Mo2C nano rods	Appl. Catal. B Environ. 2014 , 154-155, 232– 237	32@200 mV	45	0.43
Porous MoC _x	Nat. Commun. 2015 , 6, 1–8	10@142 mV	53	0.8
Mo2C	J. Power Sources 2015 , 296, 18–22	60@200 mV 100@300 mV	55	0.213
nw-W4MoC	Adv. Funct. Mater. 2015 , 25, 1520–1526	80@184 mV	52	1.28
Mo ₂ C@NC	Angew. Chemie - Int. Ed. 2015 , 54, 10752– 10757	1@60 mV 10@124 mV	60	0.28
Mo2C-CNT- graphene	ACS Nano 2014 , 8, 5164–5173	10@130 mV	58	0.65

Figure S9. LSV curve of rGO-A-MoP composite in 0.1 phosphate buffer (pH=7.0) and it does not show any HER activity.

Figure S10. Equivalent circuit used to fit the impedance data.

Potential vs.	R _{ct} (Ohm)	C _{dl} (mF)	R _s (Ohm)	potentials.
RHE (mV)				
60	7727	0.205	47	
80	3124	0.509	38	
100	(07	2 2 1 5	47	
100	08/	2.315	4/	
120	276	2.533	41	
140	121	1.961	36	
160	74	1.338	30	
200	31	0.536	26	

Table S2. EIS fitting parameters of rGO-A-MoP composite in 0.5 M H₂SO₄ at different applied

Table S3. EIS semicircle fitting parameters of rGO-A-MoP in 1M KOH at different applied potentials.

Bias (mV	R _s (Ohm)	R_{ct} (Ohm)	C_{dl} (μ F)
vs. RHE)			
0	20	228000	6.9
20	17	121000	13
40	21	55000	28
60	19	26000	60
80	21	10000	155
100	26	3700	188
120	32	1470	166
140	31	614	149
160	29	285	132
180	28	159	116
200	28	98	104
220	29	67	100

Figure S11. (a) Variation of R_{ct} and capacitance with applied potentials in acidic medium, (b) corresponding Tafel plot calculated from R_{ct} . (c) Variation of R_{ct} and capacitance with applied potentials in alkaline medium and (d) corresponding Tafel plot calculated from R_{ct} .

Figure S12. LSV curves of (a) MoP synthesized at 850 °C in presence of citric acid and (b) MoP synthesized at 850 °C in H_2 and MoP-A synthesized at 850 °C in H_2 in presence of aniline.

References:

- (1) Jr., W. S. H.; Offeman, R. E. J. Am. Chem. Soc. **1958**, 80, 1939.
- (2) Tang, C.; Wang, W.; Sun, A.; Qi, C.; Zhang, D.; Wu, Z.; Wang, D. ACS Catal. **2015**, *5*, 6956–6963.