Electronic Supplementary Information

p-Cu₂S/n-Zn_xCd_{1-x}S nanocrystals dispersed in 3D porous graphene nanostructure: an excellent photocatalyst for hydrogen generation through sun light driven water splitting

Chun-Chieh Wang^a, Je-Wei Chang^a and Shih-Yuan Lu^{a*}

Department of Chemical Engineering, National Tsing-Hua University Hsin-Chu 30013, Taiwan E-mail: SYLU@mx.nthu.edu.tw

Table S1. Comparison of specific hydrogen evolution rate of metal sulfide based sunlight driven water splitting

Ref.	Photocatalyst	Specific H ₂ evolution rate (μ mole hr ⁻¹ g ⁻¹)	
26	Cu _{0.8} Ag _{0.2} GaS ₂ /Ru	890	
26	AgGaS ₂ /Ru	2635	
27	ZnS-CuS-CdS	838	
28	((Cu _{0.75} Ag _{0.25}) ₂ ZnSnS ₄) _{0.9} (ZnS) _{0.4} /Ru	750	
This work	$Zn_{0.71}Cd_{0.29}S/StG/Cu_2S$	1202	

Table S2. Band gap energies of $Zn_xCd_{1-x}S$ as function of x.

Material	Energy band gap (eV)
ZnS	3.6
$Zn_{0.8}Cd_{0.2}S$	2.77
$Zn_{0.71}Cd_{0.29}S$	2.68
$Zn_{0.45}Cd_{0.55}S$	2.56
$Zn_{0.18}Cd_{0.82}S$	2.46
$Zn_{0.12}Cd_{0.88}S$	2.44
CdS	2.35

Dhotocataluct	Specific surface area	
PHOLOCALAIYSI	(m²g-1)	
ZnS	77	
$Zn_{0.8}Cd_{0.2}S$	86	
$Zn_{0.71}Cd_{0.29}S$	92	
$Zn_{0.45}Cd_{0.55}S$	93	
$Zn_{0.18}Cd_{0.82}S$	86	
$Zn_{0.12}Cd_{0.88}S$	86	
CdS	74	

Table S3. Specific surface areas of $Zn_xCd_{1-x}S$ nanocrystals.

Figure S1. Spectrum of light source from <u>https://www.newport.com/f/small-area-</u> <u>solar-simulators</u>.

Figure S2. Plot of $(F(R)hu)^2$ vs. photo energy (hu) for Cu₂S.

Figure S3. XRD patterns of n-Zn_{0.71}Cd_{0.29}S, p-Cu₂S/n-Zn_{0.71}Cd_{0.29}S, and p-Cu₂S/n-

 $Zn_{0.71}Cd_{0.29}S/StG$. Loadings of Cu_2S and StG were 1 and 0.06 wt.%, respectively.