Supporting Information

Mechanistic insights into formation of butene isomers from 1-butanol in H-ZSM-5: DFT based microkinetic modelling

Mathew John, Konstantinos Alexopoulos, Marie-Françoise Reyniers* and Guy B. Marin
Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Gent, Belgium

* Corresponding author.

Tel.: +32 9331 1735. Fax: +32 9331 1759. E-mail: MarieFrancoise.Reyniers@ugent.be.

Table of Contents

S1. Statistical thermodynamic calculation

S2. Detailed reaction network
S3. Expression for the TOFs of individual reaction mechanisms

S1. Statistical thermodynamic calculation

The molecular partition function q for gas-phase species is calculated from statistical thermodynamics ${ }^{1}$ as follows:
$q(V, T)=q_{\text {trans }}(V, T) q_{v i b}(T) q_{\text {rot }}(T)$
$\mathrm{q}_{\text {vib }}, \mathrm{q}_{\text {trans }}$ and $\mathrm{q}_{\text {rot }}$ correspond to vibrational, translational and rotational molecular partition function, respectively.

Translational partition function

$$
\begin{equation*}
q_{\text {trans }}(V, T)=\left[\frac{2 \pi m k_{B} T}{h^{2}}\right]^{\frac{3}{2}} V \tag{S.2}
\end{equation*}
$$

Rotational partition function for non-linear molecule

$$
\begin{equation*}
q_{\text {rot }}(T)=\frac{\sqrt{\pi I_{A} I_{B} I_{C}}}{\sigma}\left(\frac{8 \pi^{2} k_{B} T}{h^{2}}\right)^{\frac{3}{2}} \tag{S.3}
\end{equation*}
$$

Vibrational partition function considering the zero-point vibrational energy (ZPVE) to be the zero reference point
$q_{v i b}(T)=\prod_{i}^{3 n-6} \frac{1}{1-\exp \left(\frac{-h v_{i}}{k_{B} T}\right)}$
where, n is the number of atoms in the molecule, h is the Planck constant, k_{B} is the Boltzmann factor, T is the temperature, v_{i} represent the vibrational frequencies obtained by a full hessian calculation with VASP, m is the molecular mass. For gas phase molecules, the volume V is calculated using an ideal gas equation. $\mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}$, and I_{C} are the principal moments of inertia, σ is symmetry number.

On the other hand, the molecular partition function for immobile surface species ($\mathrm{q}_{\mathrm{immobile}}$) is calculated from statistical thermodynamics as follows:
$q(T)=q_{\text {immobile }}(T)=q_{v i b}(T)$
$q_{v i b}(T)=\prod_{i}^{3 n} \frac{1}{1-\exp \left(\frac{-h v_{i}}{k_{B} T}\right)}$
where, n is the number of atoms considered in the partial hessian calculation , h is the Planck constant, k_{B} is the Boltzmann factor, T is the temperature and v_{i} represent the vibrational frequencies obtained by a partial hessian calculation with VASP.

The total ensemble partition function $\mathrm{Q}(\mathrm{N}, \mathrm{V}, \mathrm{T})$ is given as:

$$
\begin{equation*}
Q(N, V, T)=\frac{[q(V, T)]^{N}}{N!} \tag{S.7}
\end{equation*}
$$

where, N is the number of particles and q is the molecular partition function.

Statistical thermodynamic calculation for internal energy (U), enthalpy (H), entropy (S) and Gibbs free energy (G) [Cramer]
$U=E_{D F T-D 2}+E_{Z P V E}+k_{B} T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}$
$H=U+P V=U+R T$
$S=k_{B} \ln Q+k_{B} T\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}$
$G=H-T S$
where, $\mathrm{E}_{\text {DFT-D2 }}$ is energy from the DFT-D2 calculation, Q is total partition function, $\mathrm{E}_{\text {ZPVE }}$ is the zero point vibrational energy calculated as the sum of all the molecular vibrational energies at $0 \mathrm{~K}\left(E_{Z P V E}=\sum_{i}^{\text {modes }} \frac{1}{2} h v_{i}\right)$.

S2. Detailed reaction network

Figure S1: Detailed reaction network for 1-butanol dehydration to butene isomers in H-ZSM-5. Reaction steps in black and blue correspond to dehydration of 1-butanol to DBE / 1-butene ${ }^{2}$ and 2t-butene/2c-butene/isobutene, respectively.

S3. Expression for the TOFs of individual reaction mechanisms

For reaction mechanism involving a unique activated step, the TOF for that mechanism is equal to the TOF of the corresponding unique activated step. For e.g.
$\mathrm{TOF}_{\mathrm{m} 1}=\mathrm{TOF}_{\mathrm{R} 2}$
$\mathrm{TOF}_{\mathrm{m} 2}=\mathrm{TOF}_{\mathrm{R} 4}$
$\mathrm{TOF}_{\mathrm{m} 3}=\mathrm{TOF}_{\mathrm{R} 7}$
$\mathrm{TOF}_{\mathrm{m} 4}=\mathrm{TOF}_{\mathrm{R} 10}$
$\mathrm{TOF}_{\mathrm{m} 5}=\mathrm{TOF}_{\mathrm{R} 13}$
$\mathrm{TOF}_{\mathrm{m} 6}=\mathrm{TOF}_{\mathrm{R} 15}$
$\mathrm{TOF}_{\mathrm{m} 7}=\mathrm{TOF}_{\mathrm{R} 18}$
$\mathrm{TOF}_{\mathrm{m} 8}=\mathrm{TOF}_{\mathrm{R} 19}$
$\mathrm{TOF}_{\mathrm{m} 9}=\mathrm{TOF}_{\mathrm{R} 20}$
$\mathrm{TOF}_{\mathrm{m} 10}=\mathrm{TOF}_{\mathrm{R} 23}$
$\mathrm{TOF}_{\mathrm{m} 11}=\mathrm{TOF}_{\mathrm{R} 24}$
$\mathrm{TOF}_{\mathrm{m} 12}=\mathrm{TOF}_{\mathrm{R} 25}$
$\mathrm{TOF}_{\mathrm{m} 13}=\mathrm{TOF}_{\mathrm{R} 26}$

For reaction mechanisms not having a unique activated step, a case specific algorithm is used for calculation of TOF. For e.g.
$\mathrm{TOF}_{\mathrm{R} 29}>0$, indicates $\mathrm{TOF}_{\mathrm{m} 16}=\operatorname{TOF}_{\mathrm{m} 18}=0$
$\mathrm{TOF}_{\mathrm{R} 29}<0$, indicates $\mathrm{TOF}_{\mathrm{m} 14}=0$
$\mathrm{TOF}_{\mathrm{R} 30}>0$ indicates $\mathrm{TOF}_{\mathrm{m} 19}=0$
$\mathrm{TOF}_{\mathrm{R} 30}<0$ indicates $\mathrm{TOF}_{\mathrm{m} 15}=\mathrm{TOF}_{\mathrm{m} 16}=0$

Under most of the reaction conditions used in the present study the conversion of 2-butoxide to 2t-butene* (R29) and 2c-butene* (R30) have a net positive value for their TOF.

If $\left(\mathrm{TOF}_{\mathrm{R} 29}>0\right.$ and $\left.\mathrm{TOF}_{\mathrm{R} 30}>0\right)$
$\mathrm{TOF}_{\mathrm{m} 14}=\mathrm{TOF}_{\mathrm{R} 29}$.
$\mathrm{TOF}_{\mathrm{m} 15}=\mathrm{TOF}_{\mathrm{R} 30}$.
$\mathrm{TOF}_{\mathrm{m} 16}=0$
$\mathrm{TOF}_{\mathrm{m} 17}=\mathrm{TOF}_{\mathrm{R} 28}-\mathrm{TOF}_{\mathrm{m} 14}-\mathrm{TOF}_{\mathrm{m} 15}$
$\operatorname{TOF}_{\mathrm{m} 18}=0$.
$\operatorname{TOF}_{\mathrm{m} 19}=0$

When the gas phase and surface concentration of 2t-butene is very high, 2 t -butene* can get converted into 2-butoxide (1.e $\mathrm{TOF}_{\mathrm{R} 29}<0$)

If $\left(\mathrm{TOF}_{\mathrm{R} 29}<0\right.$ and $\left.\mathrm{TOF}_{\mathrm{R} 30}>0\right)$
$\mathrm{TOF}_{\mathrm{m} 14}=0$
$\mathrm{TOF}_{\mathrm{m} 19}=0$

In order to obtain the TOF for reaction mechanisms m15-18, we have to solve for a linear set of algebraic equations

$$
\begin{equation*}
\mathrm{TOF}_{\mathrm{m} 14}+\mathrm{TOF}_{\mathrm{m} 15}+\mathrm{TOF}_{\mathrm{m} 17}=\mathrm{TOF}_{\mathrm{R} 28 .} \tag{S.33}
\end{equation*}
$$

as $\mathrm{TOF}_{\mathrm{m} 14}=0$ equation 22 becomes
$\mathrm{TOF}_{\mathrm{m} 15}+\mathrm{TOF}_{\mathrm{m} 17}=\mathrm{TOF}_{\mathrm{R} 28}$.
$\mathrm{TOF}_{\mathrm{m} 16}+\mathrm{TOF}_{\mathrm{m} 18}=-\mathrm{TOF}_{\mathrm{R} 29}$.
$\mathrm{TOF}_{\mathrm{m} 15}+\mathrm{TOF}_{\mathrm{m} 16}=\mathrm{TOF}_{\mathrm{R} 30}$.
$\mathrm{TOF}_{\mathrm{m} 17}+\mathrm{TOF}_{\mathrm{m} 18}+\mathrm{TOF}_{\mathrm{m} 19}=\mathrm{TOF}_{\mathrm{R} 32}=\mathrm{TOF}_{\mathrm{R} 33}$.
as $\operatorname{TOF}_{\mathrm{m} 19}=0$ equation 26 becomes
$\mathrm{TOF}_{\mathrm{m} 17}+\mathrm{TOF}_{\mathrm{m} 18}=\mathrm{TOF}_{\mathrm{R} 32}$.

The above set of equations (eqns. 23-25 and 27) can be directly solved to obtain TOF for mechanisms m15-18.

Alternatively, when TOF for the formation of isobutene is negligible $\left(\mathrm{TOF}_{\mathrm{m} 17} \rightarrow 0\right.$ and $\operatorname{TOF}_{\mathrm{m} 18} \rightarrow 0$), equation reduces to a much simplified form.
$\mathrm{TOF}_{\mathrm{m} 15}=\mathrm{TOF}_{\mathrm{R} 28}$.
$\mathrm{TOF}_{\mathrm{m} 16}=-\mathrm{TOF}_{\mathrm{R} 29}$

Lastly, a scenario involving a net positive TOF for conversion of 2c-butene* to 2-butoxy (i.e., $\left.\operatorname{TOF}_{\mathrm{R} 30}<0\right)$ is not observed under reaction conditions used in the present study.

References:

1. C. J. Cramer, Essentials of computational chemistry : theories and models, Wiley, Chichester Hoboken, NJ, 2nd edn., 2004.
2. M. John, K. Alexopoulos, M. F. Reyniers and G. B. Marin, J Catal, 2015, 330, 28-45.
