Supporting Information

Mechanistic insights into formation of butene isomers from 1-butanol in H-ZSM-5: DFT based microkinetic modelling

Mathew John, Konstantinos Alexopoulos, Marie-Françoise Reyniers* and Guy B. Marin

Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Gent, Belgium

* Corresponding author.

Tel.: +32 9 331 1735. Fax: +32 9 331 1759. E-mail: MarieFrancoise.Reyniers@ugent.be.

Table of Contents

- S1. Statistical thermodynamic calculation
- **S2. Detailed reaction network**

S3. Expression for the TOFs of individual reaction mechanisms

S1. Statistical thermodynamic calculation

The molecular partition function q for gas-phase species is calculated from statistical thermodynamics ¹ as follows:

$$q(V,T) = q_{trans}(V,T)q_{vib}(T)q_{rot}(T)$$
(S.1)

 q_{vib} , q_{trans} and q_{rot} correspond to vibrational, translational and rotational molecular partition function, respectively.

Translational partition function

$$q_{trans}(V,T) = \left[\frac{2\pi m k_B T}{h^2}\right]^{\frac{3}{2}} V$$
(S.2)

Rotational partition function for non-linear molecule

$$q_{rot}(T) = \frac{\sqrt{\pi I_A I_B I_C}}{\sigma} \left(\frac{8\pi^2 k_B T}{h^2}\right)^{\frac{3}{2}}$$
(S.3)

Vibrational partition function considering the zero-point vibrational energy (ZPVE) to be the zero reference point

$$q_{vib}(T) = \prod_{i}^{3n-6} \frac{1}{1 - \exp\left(\frac{-h\nu_i}{k_B T}\right)}$$
(S.4)

where, n is the number of atoms in the molecule, h is the Planck constant, k_B is the Boltzmann factor, T is the temperature, v_i represent the vibrational frequencies obtained by a full hessian calculation with VASP, m is the molecular mass. For gas phase molecules, the volume V is calculated using an ideal gas equation. I_A , I_B , and I_C are the principal moments of inertia, σ is symmetry number.

On the other hand, the molecular partition function for immobile surface species $(q_{immobile})$ is calculated from statistical thermodynamics as follows:

$$q(T) = q_{innnobile}(T) = q_{vib}(T)$$
(S.5)

$$q_{vib}(T) = \prod_{i}^{3n} \frac{1}{1 - \exp\left(\frac{-hv_i}{k_B T}\right)}$$
(S.6)

where, n is the number of atoms considered in the partial hessian calculation , h is the Planck constant, k_B is the Boltzmann factor, T is the temperature and v_i represent the vibrational frequencies obtained by a partial hessian calculation with VASP.

The total ensemble partition function Q(N,V,T) is given as:

$$Q(N,V,T) = \frac{\left[q(V,T)\right]^{N}}{N!}$$
(S.7)

where, N is the number of particles and q is the molecular partition function .

Statistical thermodynamic calculation for internal energy (U), enthalpy (H), entropy (S) and Gibbs free energy (G) [Cramer]

$$U = E_{DFT-D2} + E_{ZPVE} + k_B T^2 \left(\frac{\partial \ln Q}{\partial T}\right)_{N,V}$$
(S.8)

$$H = U + PV = U + RT \tag{S.9}$$

$$S = k_B \ln Q + k_B T \left(\frac{\partial \ln Q}{\partial T}\right)_{N,V}$$
(S.10)

$$G = H - TS \tag{S.11}$$

where, E_{DFT-D2} is energy from the DFT-D2 calculation, Q is total partition function, E_{ZPVE} is the zero point vibrational energy calculated as the sum of all the molecular vibrational

energies at 0K (
$$E_{ZPVE} = \sum_{i}^{\text{modes}} \frac{1}{2}hv_i$$
).

S2. Detailed reaction network

Figure S1: Detailed reaction network for 1-butanol dehydration to butene isomers in H-ZSM-5. Reaction steps in black and blue correspond to dehydration of 1-butanol to DBE / 1-butene² and 2t-butene/2c-butene/isobutene, respectively.

S3. Expression for the TOFs of individual reaction mechanisms

For reaction mechanism involving a unique activated step, the TOF for that mechanism is equal to the TOF of the corresponding unique activated step. For e.g.

$TOF_{m1} = TOF_{R2}$	(S.12)
$TOF_{m2} = TOF_{R4}$	(S.13)
$TOF_{m3} = TOF_{R7}$	(S.14)
$TOF_{m4} = TOF_{R10}$	(S.15)
$TOF_{m5} = TOF_{R13}$	(S.16)
$TOF_{m6} = TOF_{R15}$	(S .17)
$TOF_{m7} = TOF_{R18}$	(S.18)
$TOF_{m8} = TOF_{R19}$	(S.19)
$TOF_{m9} = TOF_{R20}$	(S.20)
TOF _{m10} =TOF _{R23}	(S.21)
$TOF_{m11} = TOF_{R24}$	(S.22)
$TOF_{m12} = TOF_{R25}$	(S.23)
$TOF_{m13} = TOF_{R26}$	(S.24)

For reaction mechanisms not having a unique activated step, a case specific algorithm is used for calculation of TOF. For e.g.

 $TOF_{R29} > 0$, indicates $TOF_{m16} = TOF_{m18} = 0$

 $TOF_{R29} < 0$, indicates $TOF_{m14}=0$

 $TOF_{R30} > 0$ indicates $TOF_{m19} = 0$

$$TOF_{R30} < 0$$
 indicates $TOF_{m15} = TOF_{m16} = 0$

Under most of the reaction conditions used in the present study the conversion of 2-butoxide to 2t-butene* (R29) and 2c-butene* (R30) have a net positive value for their TOF.

If $(TOF_{R29} > 0 \text{ and } TOF_{R30} > 0)$

$TOF_{m14} = TOF_{R29}$	(S.25)
$TOF_{m15} = TOF_{R30}$	(S.26)
TOF _{m16} =0	(S.27)
$TOF_{m17} = TOF_{R28} - TOF_{m14} - TOF_{m15}$	(S.28)
TOF _{m18} =0	(S.29)
TOF _{m19} =0	(S.30)

When the gas phase and surface concentration of 2t-butene is very high, 2t-butene* can get converted into 2-butoxide (1.e $TOF_{R29} < 0$)

If (TOF_{R29} \! < \! 0 and ~ TOF_{R30} \! > \! 0)

 $TOF_{m14} = 0$ (S.31)

 $TOF_{m19} = 0$ (S.32)

In order to obtain the TOF for reaction mechanisms m15-18, we have to solve for a linear set of algebraic equations

$TOF_{m14} + TOF_{m15} + TOF_{m17} = TOF_{R28}$	(S.33)	
as $TOF_{m14} = 0$ equation 22 becomes		
$TOF_{m15} + TOF_{m17} = TOF_{R28}.$	(S.34)	
$TOF_{m16} + TOF_{m18} = -TOF_{R29}.$	(S.35)	
$TOF_{m15} + TOF_{m16=} TOF_{R30.}$	(S.36)	
$TOF_{m17} + TOF_{m18} + TOF_{m19} = TOF_{R32} = TOF_{R33}$	(S.37)	
as $TOF_{m19} = 0$ equation 26 becomes		
$TOF_{m17} + TOF_{m18} = TOF_{R32}.$	(S.38)	
The above set of equations (eqns. 23-25 and 27) can be directly solved to obtain TOF for		
mechanisms m15-18.		
Alternatively, when TOF for the formation of isobutene is negligible (TOF _{m17} \rightarrow 0 and		
TOF _{m18} \rightarrow 0), equation reduces to a much simplified form.		

$TOF_{m15} = TOF_{R28}$	(S.39)

$TOF_{m16} =$	- TOF _{R29}	(S.40)
---------------	----------------------	--------

Lastly, a scenario involving a net positive TOF for conversion of 2c-butene* to 2-butoxy (i.e., $TOF_{R30} < 0$) is not observed under reaction conditions used in the present study.

References:

- C. J. Cramer, *Essentials of computational chemistry : theories and models*, Wiley, Chichester Hoboken, NJ, 2nd edn., 2004.
- 2. M. John, K. Alexopoulos, M. F. Reyniers and G. B. Marin, *J Catal*, 2015, **330**, 28-45.