Supporting information

## Differentiation of C-O and C-C bond Scission Mechanism of 1-Hexadecanol on Pt(111) and Ru(0001): A First Principles Analysis

Meng-Ru Li<sup>1</sup> and Gui-Chang Wang<sup>\*,1,2</sup>

(<sup>1</sup> Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China; <sup>2</sup> State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China)

\*Corresponding author: Gui-Chang Wang. E-mail: <u>wangguichang@nankai.edu.cn</u> Telephone: +86-22-23503824 (O) Fax: +86-22-23502458

## **Contents:**

**Table S1** the terms of partition functions applied in this work. For the molecules adsorbed on

 catalyst surface, as they disables to translate or rotate when treated as static bodies, only the

 vibrational and electronic terms of partition functions will be considered

**Table S2** Elementary reaction steps and kinetic parameters for Hexadecanol decomposition

 Reaction on Ru (0001) in this work

**Table S3** Elementary reaction steps and kinetic parameters for Hexadecanol decomposition

 Reaction on Pt (111) in this work

**Table S4** The calculated binding energies and the predicted binding energies of 1-Hexadecanol

 and its dehydrogenated intermediates on Pt (111) in this work

**Figure S1** Optimized configurations for the TSs involved in the side reaction on Pt (111) and Ru (0001)

Table S1. Partition Functions Applied in the Micro-kinetic Model of ethanol reactions

| type                    | Partition function                                                                                  |
|-------------------------|-----------------------------------------------------------------------------------------------------|
| Translation             | $q^{T} = \left(\frac{2\pi m k_{B}T}{h^{2}}\right)^{3/2}$                                            |
| Rotational (linear)     | $q_{linear}^{R} = \frac{1}{\sigma} \frac{k_{B}T}{hB}$                                               |
| Rotational (non-linear) | $q_{non-linear}^{R} = \frac{1}{\sigma} \left(\frac{k_{B}T}{hB}\right)^{3/2} \sqrt{\frac{\pi}{ABC}}$ |
| Vibration               | $q^{\nu} = \prod_{i}^{DF} \left( \frac{1}{1 - e^{-\frac{hv_i}{k_B T}}} \right)$                     |
| Electronic              | $q^E = (2S+1)e^{-\frac{E_a}{k_BT}}$                                                                 |
| Total                   | $q = q^T q^R q^V q^E$                                                                               |

Note: h, V and  $\sigma$  refer to Plank's constant, the volume of the system and the symmetry factor, respectively. A, B and C are rotational constants, V<sub>i</sub> is denoted as the vibrational frequency of the ith mode, DF refers to the degree of freedoms, S is the total spin angular momentum, E<sub>g</sub> is the electronic energy from the ground state.

Table S2. Elementary reaction steps and kinetic parameters for Hexadecanol decomposition

|     | ( )                                                                                 |            |         |                |         |
|-----|-------------------------------------------------------------------------------------|------------|---------|----------------|---------|
| Rea | ction                                                                               | $E_a/eV$   | А       | $E_a^{-1}/ eV$ | A-1     |
| M1  | $RCH_2CH_2OH (g) + * \rightarrow RCH_2CH_2OH *$                                     | 0.00       | 6.15e2  | 1.66(1.78)     | 5.69e19 |
| M2  | $RCH_2CH_2OH^{*+*} \rightarrow RCH_2CH_2O^{*} + H^{*}$                              | 0.57(0.72) | 1.95e13 | 1.02(1.02)     | 2.75e13 |
| M3  | $RCH_2CH_2O^{*+*} \rightarrow RCH_2CHO^{*} + H^{*}$                                 | 0.21(0.36) | 1.79e13 | 0.49(0.50)     | 1.81e13 |
| M4  | $\text{RCH}_2\text{CHO}^{*+*} \rightarrow \text{RCH}_2\text{CO}^{*} + \text{H}^{*}$ | 0.00(0.09) | 1.73e13 | 0.80(0.83)     | 1.81e13 |

Reaction on Ru (0001) in this work <sup>a</sup>

| M5  | $RCH_2CO^{*+*} \rightarrow RCHCO^{*+}H^*$                                                  | 0.75(0.89) | 1.55e13 | 1.01(1.07) | 1.73e13 |
|-----|--------------------------------------------------------------------------------------------|------------|---------|------------|---------|
| M6  | RCHCO*+*→RCH*+CO*                                                                          | 0.47(0.54) | 2.19e13 | 1.35(1.36) | 1.52e13 |
| M7  | $CO^* \rightarrow CO(g)^+ *$                                                               | 1.86(1.97) | 5.85e17 | 0.00       | 1.81e3  |
| M8  | RCHCO*+*→RCHC*+O*                                                                          | 0.85(0.85) | 1.16e13 | 2.42(2.42) | 2.28e13 |
| M9  | $RCH^*\!+\!H^*\!\!\rightarrow\!\!RCH_2^*\!+\!*$                                            | 0.87(0.83) | 1.73e13 | 0.16(0.29) | 1.97e13 |
| M10 | $RCH_2*+H* \rightarrow RCH_3*+*$                                                           | 0.85(0.85) | 2.07e13 | 0.80(0.96) | 2.16e13 |
| M11 | $\operatorname{RCH}_3^* \rightarrow \operatorname{RCH}_3(g) + *$                           | 0.70(0.71) | 4.52e19 | 0.00       | 6.57e2  |
| M12 | RCHC*+H*→RCHCH*+*                                                                          | 0.43(0.45) | 1.68e13 | 0.00(0.15) | 1.66e13 |
| M13 | RCHCH*+H*→RCH <sub>2</sub> CH*+*                                                           | 0.34(0.38) | 1.66e13 | 0.00(0.11) | 1.72e13 |
| M14 | $RCH_2CH^{*}+H^{*}\rightarrow RCH_2CH_2^{*}+^{*}$                                          | 0.43(0.43) | 1.60e13 | 0.12(0.26) | 1.65e13 |
| M15 | $RCH_2CH_2*+H* \rightarrow RCH_2CH_3*+*$                                                   | 1.03(1.03) | 1.66e13 | 0.74(0.91) | 1.73e13 |
| M16 | $RCH_2CH_3^* \rightarrow RCH_2CH_3(g) +^*$                                                 | 1.15(1.15) | 5.11e19 | 0.00       | 6.37e2  |
| M17 | CO*+H*→HCO*+*                                                                              | 1.32(1.32) | 2.32e13 | 0.27(0.34) | 2.53e13 |
| M18 | $HCO*+H*{\rightarrow}H_2CO*+*$                                                             | 0.50(0.50) | 2.11e13 | 0.13(0.21) | 2.48e13 |
| M19 | $H_2CO^{*+*} \rightarrow CH_2^{*+}O^{*}$                                                   | 1.10(1.14) | 2.19e13 | 1.46(1.46) | 2.86e13 |
| M20 | $CH_2*+H*\rightarrow CH_3*+*$                                                              | 0.55(0.55) | 1.84e13 | 0.38(0.49) | 1.13e13 |
| M21 | $\mathrm{CH}_3{}^{*}\!\!+\!\!\mathrm{H}^{*}\!\!\rightarrow\!\!\mathrm{CH}_4{}^{*}\!\!+\!*$ | 0.72(0.72) | 3.08e13 | 0.75(0.90) | 4.98e12 |
| M22 | $CH_4* \rightarrow CH_4(g)+*$                                                              | 0.38(0.42) | 1.01e16 | 0.00       | 2.39e3  |
| M23 | $2H^* \rightarrow H_2^{*+*}$                                                               | 0.61(0.64) | 3.25e13 | 0.00(0.02) | 2.06e13 |
| M24 | $H_2^* \rightarrow H_2(g)^{+*}$                                                            | 0.82(0.96) | 6.54e14 | 0.00       | 6.77e3  |
| M25 | O*+H*→OH*+*                                                                                | 1.30(1.35) | 2.38e13 | 0.65(0.84) | 1.87e13 |
| M26 | $OH^{*}\!\!+\!\!H^{*}\!\!\rightarrow\!\!H_{2}O^{*}\!\!+\!\!*$                              | 0.94(0.99) | 2.24e13 | 0.77(0.96) | 1.34e13 |
| M27 | $\mathrm{H_2O}^*\!\!\rightarrow\mathrm{H_2O}(g)\!\!+\!\!*$                                 | 0.56(0.64) | 1.00e13 | 0.00       | 2.93e8  |

Note: The magnitude of pre-exponential factors (A) was estimated at 473 K and 1.00 MPa. <sup>a</sup> Entries in parentheses are the energies before ZPE correction.

**Table S3.** Elementary reaction steps and kinetic parameters for Hexadecanol decomposition Reaction on Pt(111) in this work <sup>a</sup>

| Reaction | $E_a/eV$ | А | $E_a^{-1}/ eV$ | A-1 |
|----------|----------|---|----------------|-----|
|          |          |   |                |     |

| M1  | $RCH_2CH_2OH(g)+*\rightarrow RCH_2CH_2OH*$                                                                     | 0.00       | 6.15e2  | 1.34(1.45) | 5.69e19 |
|-----|----------------------------------------------------------------------------------------------------------------|------------|---------|------------|---------|
| M2  | $RCH_2CH_2OH^{*+*} \rightarrow RCH_2CHOH^{*+}H^{*}$                                                            | 0.34(0.46) | 2.03e13 | 0.68(0.68) | 2.12e13 |
| M3  | $RCH_2CHOH*+* {\rightarrow} RCH_2COH*+H*$                                                                      | 0.42(0.66) | 1.53e13 | 0.33(0.40) | 1.38e13 |
| M4  | $RCH_2COH^{*+*} \rightarrow RCH_2C^{*+}OH^{*}$                                                                 | 0.70(0.72) | 1.72e13 | 0.91(0.91) | 1.54e13 |
| M5  | $RCH_2COH *+* \rightarrow RCH_2CO* + H*$                                                                       | 0.18(0.40) | 1.35e13 | 0.75(0.79) | 1.35e13 |
| M6  | $\text{RCH}_2\text{CO} *+* \rightarrow \text{RCHCO}*+\text{H}*$                                                | 1.36(1.47) | 1.75e13 | 0.48(0.62) | 2.06e13 |
| M7  | RCHCO*+*→RCH*+CO*                                                                                              | 0.98(1.01) | 3.95e13 | 0.81(0.82) | 1.34e13 |
| M8  | $\mathrm{RCH}_2\mathrm{C}^{*}\!\!+\!\!\mathrm{H}^{*}\!\!\rightarrow\mathrm{RCH}_2\mathrm{CH}^{*}\!\!+\!\!*$    | 0.91(0.91) | 1.61e13 | 0.25(0.39) | 1.85e13 |
| M9  | $\mathrm{RCH}_2\mathrm{CH}^{*}\!\!+\!\!\mathrm{H}^{*}\!\!\rightarrow\mathrm{RCH}_2\mathrm{CH}_2^{*}\!\!+\!\!*$ | 0.45(0.51) | 1.16e13 | 0.96(1.17) | 1.78e13 |
| M10 | $RCH_2CH_2*+H* {\rightarrow} RCH_2CH_3*+*$                                                                     | 0.89(0.93) | 1.16e13 | 0.70(0.87) | 1.89e13 |
| M11 | $\text{RCH*+H*} \rightarrow \text{RCH}_2\text{*+*}$                                                            | 0.70(0.70) | 1.57e13 | 0.98(1.14) | 1.96e13 |
| M12 | $\text{RCH}_2*+\text{H}*{\rightarrow}\text{RCH}_3*+*$                                                          | 0.72(0.74) | 2.51e13 | 0.60(0.78) | 1.77e13 |
| M13 | $RCH_2CH_3^* \rightarrow RCH_2CH_3(g) +^*$                                                                     | 0.98(0.98) | 5.11e19 | 0.00       | 6.37e2  |
| M14 | $RCH_3^* \rightarrow RCH_3(g) + *$                                                                             | 1.49(1.49) | 4.52e19 | 0.00       | 6.57e2  |
| M15 | $2H^* \rightarrow H_2^{*+*}$                                                                                   | 1.12(1.12) | 2.28e13 | 0.30(0.33) | 5.11e12 |
| M16 | $H_2^* \rightarrow H_2(g) + *$                                                                                 | 0.11(0.11) | 6.54e14 | 0.00       | 6.77e3  |
|     |                                                                                                                |            |         |            |         |

Note: The magnitude of pre-exponential factors (A) was estimated at 473 K and 1.00 MPa. <sup>a</sup> Entries in parentheses are the energies before ZPE correction.

Table S4. The calculated binding energies and the predicted binding energies of 1-Hexadecanol

|                                     | binding energy (eV)       |                               |  |
|-------------------------------------|---------------------------|-------------------------------|--|
| species                             | Pt(111), DFT <sup>a</sup> | Pt(111), Scaling <sup>b</sup> |  |
| RCH <sub>2</sub> CH <sub>2</sub> OH | -0.25                     | -0.25                         |  |
| RCH <sub>2</sub> CH <sub>2</sub> O  | 0.88                      | 0.88                          |  |
| RCH <sub>2</sub> CHOH               | 0.03                      | 0.03                          |  |
| RCHCH <sub>2</sub> OH               | 0.22                      | 0.22                          |  |
| RCH <sub>2</sub> CHO                | 0.77                      | 0.77                          |  |
| RCHCH <sub>2</sub> O                | 1.08                      | 1.41                          |  |
| RCHCHOH                             | 0.45                      | 0.50                          |  |
| RCCH <sub>2</sub> OH                | 1.14                      | 0.68                          |  |

and its dehydrogenated intermediates in Figure 2 on Pt (111)

| RCH <sub>2</sub> COH | 0.65 | 0.31 |
|----------------------|------|------|
| RCHCHO               | 1.30 | 1.30 |
| RCH <sub>2</sub> CO  | 0.45 | 0.66 |
| RCCH <sub>2</sub> O  | 1.89 | 1.94 |
| RCCHOH               | 0.61 | 0.96 |
| RCHCOH               | 0.90 | 0.78 |
| RCCOH                | 1.00 | 1.24 |
| RCHCO                | 1.36 | 1.19 |
| RCCHO                | 1.74 | 1.83 |
|                      |      |      |

Note: <sup>a</sup> refers to the calculated binding energies of the 1-Hexadecanol and its dehydrogenated intermediates in Figure 2 on Pt (111); <sup>b</sup> refers to the predicted binding energies of the 1-Hexadecanol and its dehydrogenated intermediates in Figure 2 on Pt (111)



RCH<sub>2</sub>CH<sub>2</sub>OH\*+\*-RCH<sub>2</sub>CH<sub>2</sub>\*+OH\*





RCH2CHOH\*+\*>RCH2CH\*+OH\*



RCH<sub>2</sub>CHO\*+\*->RCHCHO\*+H\*



RCH2CO\*+\*-RCH2CH\*+O\*



RCH₂CHO\*+\*→RCH₂CO\*+H\*

RCHCO\*+\*--RCHC\*+O\*



RCHC\*+\*---RCH\*+C\*



RCH<sub>2</sub>CH\*+\*--- RCH<sub>2</sub>C\*+H\*



RCH2CH\*+\*-RCHCH\*+H\*

Ru:



RCH<sub>2</sub>C\*+\*--RCHC\*+H\*





RCH2CH2OH\*+\*-RCH2CH2\*+OH\* RCHCO\*+\*--RCCO\*+H\*

RCCO\*+H\* R



RCH,CH,O\*+\*-RCH,CH,\*+O\*

## Figure S1. Optimized configurations for the TSs involved in the side reaction on Pt

(111) and Ru (0001).

Here  $R=C_{14}H_{29}$ .