Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Selective Hydrogenation of Acetylene over Cu(211), Ag(211) and Au(211): Horiuti-Polanyi Mechanism *vs.* Non-Horiuti-Polanyi Mechanism

Bo Yang^{1,2,*}, Robbie Burch², Christopher Hardacre^{2, 3,*}, P. Hu^{2,*} and Philip Hughes⁴

¹School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
²CenTACat, School of Chemistry & Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG, U. K.
³School of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester M13 9PL, U.K.
⁴Johnson Matthey Catalysts, PO Box 1, Billingham, Teesside, TS23 1LB, U.K.

*Email address: <u>yangbo1@shanghaitech.edu.cn</u>; <u>c.hardacre@manchester.ac.uk</u>; <u>p.hu@qub.ac.uk</u>

Table S1 Adsorption/binding energies (eV) of C_2H_2 , C_2H_3 and C_2H_4 on the possible adsorption sites over Cu(211), Ag(211) and Au(211). The corresponding input structures over Ag(211) are shown in Figure S1 as examples.

		Cu(211)	Ag(211)	Au(211)
C ₂ H ₂	В5	-1.04	0.10	-0.46
	hcp	-1.36	0.06	-0.56
	fcc	-1.36 ^a	0.22	-0.30
C ₂ H ₃	bridge	-2.44	-1.74	-2.00
	hcp	-2.44 ^{<i>a</i>}	-1.74 ^a	-2.00 ^a
C ₂ H ₄	2σ	-0.42	-0.10	-0.24
	π	-0.54	-0.21	-0.35

^{*a*} These structures changed to the most stable one after optimization.

Figure S1 Input structures of possible C_2H_2 , C_2H_3 and C_2H_4 adsorption configurations.

Figure S2 Possible transition state structures of C_2H_2 hydrogenation with H_2 over Ag(211) and Au(211). The corresponding reaction barriers are also shown here.