Supporting information

Preparation of zirconium and hafnium complexes containing chiral N atoms from unsymmetric tertiary amine ligands, and their catalytic properties for polymerization of *rac*-lactide

Minggang Hu,^{*a} Fuzhong Han,^a Wenzhi Zhang,^a Wenhui Ma,^a Qigang Deng,^{*a} Weiming Song,^a Hailong Yan^b and Guohua Dong^a

^a College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China

^b Qiqihar Environmental Protection Bureau monitoring center, Qiqihar 161005, China

Fig. S1 ¹H NMR spectrum (600 MHz, CDCl₃) of PLA prepared by the polymerization of *rac*-LA using **3**/methanol (The signals marked with an asterisk are attributed to the monomer).

Fig. S2 Kinetics of *rac*-LA polymerization using complexes **3** as a catalyst in toluene at different tempreature with [LA] = 1.0mol/L: I, 130°C, $k_{app} = 1.74 \pm 0.05$ (R = 0.998); II, 110°C, $k_{app} = 0.87 \pm 0.01$ (R = 0.999); II, 90°C, $k_{app} = 0.52 \pm 0.01$ (R = 0.998); IV, 70°C, $k_{app} = 0.21 \pm 0.01$ (R = 0.996).

Fig. S3 Kinetics of L-LA polymerization using complexes **3** as a catalyst in toluene at different tempreature with [LA] = 1.0mol/L: I, 130°C, $k_{app} = 2.19 \pm 0.03$ (R = 0.999); II, 110°C, $k_{app} = 1.68 \pm 0.03$ (R = 0.999); II, 90°C, $k_{app} = 1.21 \pm 0.03$ (R = 0.998); IV, 70°C, $k_{app} = 0.75 \pm 0.02$ (R = 0.998).

Fig. S4 Kinetics of *rac*-LA polymerization using complexes **2** as a catalyst in toluene at different tempreature with [LA] = 1.0mol/L: I, 130°C, $k_{app} = 1.52 \pm 0.04$ (R = 0.998); II, 110°C, $k_{app} = 0.69 \pm 0.01$ (R = 0.999); III, 90°C, $k_{app} = 0.36 \pm 0.01$ (R = 0.997); IV, 70°C, $k_{app} = 0.13 \pm 0.006$ (R = 0.996).

Fig. S5 Kinetics of L-LA polymerization using complexes **2** as a catalyst in toluene at different tempreature with [LA] = 1.0mol/L: I, 130°C, $k_{app} = 1.85 \pm 0.05$ (R = 0.998); II, 110°C, $k_{app} = 1.26 \pm 0.02$ (R = 0.999); III, 90°C, $k_{app} = 0.76 \pm 0.01$ (R = 0.999); IV, 70°C, $k_{app} = 0.37 \pm 0.01$ (R = 0.999).

Fig. S6 Arrhenius plot of $\ln k_p$ versus 1/T for the polymerization of L- and *rac*-LA at different temperatures by using **2**/methanol (I, L-LA; II, *rac*-LA).

Fig. S7 Methine region of homonuclear decoupled ¹H NMR spectrum (CDCl₃, 400 MHz) of isolated PLA prepared from *rac*-LA using complex **3** as a catalyst ($P_m = 0.79$, run 6, Table 1).

Fig. S8 Methine region of homonuclear decoupled ¹H NMR spectrum (CDCl₃, 400 MHz) of isolated PLA prepared from *rac*-LA using complex 3 as a catalyst ($P_m = 072$, run 7, Table 1).

Fig. S9 Methine region of homonuclear decoupled ¹H NMR spectrum (CDCl₃, 400 MHz) of isolated PLA prepared from *rac*-LA using complex **3** as a catalyst ($P_m = 0.81$, run 8, Table 1).

Fig. S10 13 C spectrum (150 MHz, CDCl₃) of PLA prepared by the polymerization of *rac*-LA using 3/methanol.

Fig. S11 13 C spectrum (150 MHz, CDCl₃) of PLLA prepared by the polymerization of L-LA using 3/methanol.

20/1/1).