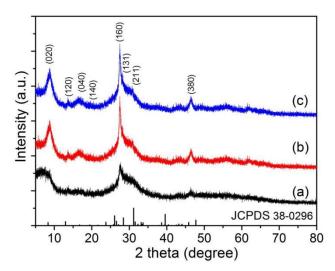
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017


Electronic Supplementary Information

Hierarchical Yolk-shell Layered Potassium Niobate for Tuned pH-Dependent Photocatalytic H₂ Evolutions

Bo Liang,^a Ning Zhang,^{*, a, b} Chen Chen ^a Xiaohe Liu,^a Renzhi Ma,^a Shengfu Tong,^c Zongwei Mei,^d Vellaisamy A. L. Roy, ^{*, b} Haiyan Wang,^e Yougen Tang ^e

- ^a School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China Email: nzhang@csu.edu.cn
- b Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China Email: val.roy@cityu.edu.hk
- ^c School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- d School of Advanced Materials, Peking University Shenzhen Graduate School, University Town, Shenzhen, Guangdong 518055, China
- ^e College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China

Additional Figures and Captions

Fig. S1 XRD profiles of as prepared materials at reaction time for (a) 2h, (b) 6 h, and (c) 12 h.

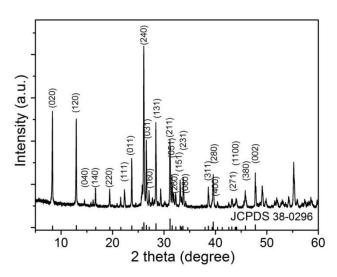


Fig. S2 XRD profile of bulk KNb_3O_8 prepared by SSR method.

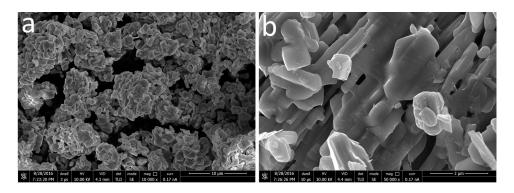


Fig. S3 (a, b) SEM images of bulk KNb_3O_8 prepared by SSR method.

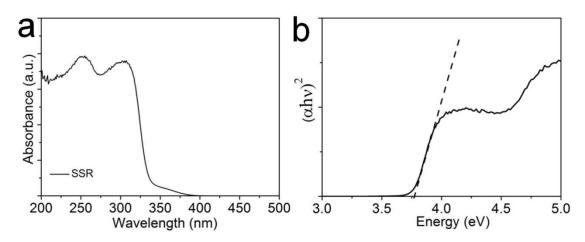


Fig. S4 (a) UV-visible diffuse reflectance spectra for bulk KNb_3O_8 prepared by SSR method; (b) the calculation diagram of its bandgap.

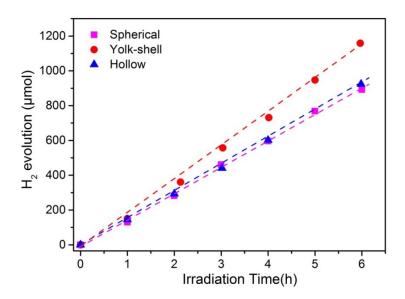


Fig. S5 H_2 evolution respect to time over spherical, yolk-shell, and hollow structures of KNb₃O₈ with loading 1 wt. % Pt.

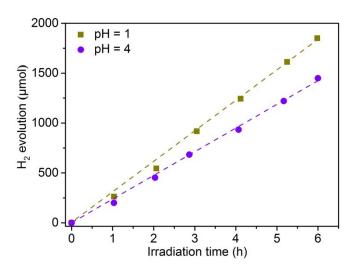


Fig. S6 H₂ evolutions over yolk-shell KNb₃O₈ with loading 1 wt. % Pt at pH 1 and 4.

The H_2 evolution rates are 243 and 317 mmol h^{-1} in the pH of 4 and 1 respectively, which are higher than the evolution rate in pH of 7. Thus, the evolution rates are also increased with decreasing pH. Such results suggest that the higher concentration of H^+ are beneficial to the photocatalytic H_2 evolutions in acid condition. Furthermore, KNb_3O_8 are completely transformed in to HNb_3O_8 because of ions exchange between H^+ and K^+ in acid condition, which also in some extent beneficial the H_2 evolutions.

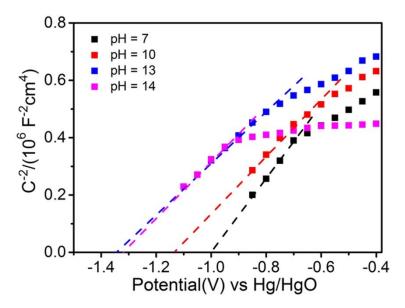


Fig. S7 Mott-Schottky plots of the bulk KNb_3O_8 at various pH values. All samples are loaded with 1 wt. % Pt.