Supplementary data

Cracked monolayer 1T MoS₂ with Abundant Active Sites for Enhanced Electrocatalytic Hydrogen Evolution

Yue Li^{1*§}, Longlu Wang^{2§}, Shuqu Zhang², Xueru Dong¹, Yuze Song¹, Tao Cai³, Yutang Liu^{3*}

¹School of Materials and Chemical Engineering, Henan Institute of Engineering,

Zhengzhou, Henan 451191, P. R. China

²State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University,

Changsha 410082, P. R. China

³College of Environmental Science and Engineering, Hunan University, Changsha

410082, P. R. China

*Y. Li, Tel.: +86 0371-67718909. Fax: +86 0371-67718909. E-mail address: liyue0128@163.com

*Y.T. Liu, Tel.: +86 0731-88821429. Fax: +86 0731-88821429. E-mail address: yt_liu@hnu.edu.cn.

§Y. Li and L.L. Wang contributed equally to this work.

Fig. S1 Polarization curves of C-1T MoS_2 samples prepared under different sonication time: 3 h, 4 h, 5 h, and 6 h.

From this figure, we can see that the sonication time can great influence on the HER performance. The overpotential at a current density of 10 mA cm⁻² decreases first and then increases with prolonging sonication time. The maximum overpotential vs reversible hydrogen electrode was achieved on 5 h sonication time.

Fig. S2 Additional TEM and HRTEM images of 2H MoS_2 nanosheets (a-b) and C-1T MoS_2 nanosheets (c-d).

Fig. S2a and b reveals the layer of hydrothermal synthesis MoS₂ nanosheets is 3-7 layers, and the edge of the nanosheets is long and continuous. However, after exfoliating the 2H MoS₂ nanosheets, the entire nanosheets was created into some monolayer smaller nanosheets as shown in Fig. S2c and d. As we can see, the edge of C-1T MoS₂ is shortened and discontinuous, confirming the C-1T MoS₂ is consisted of some MoS₂ pieces.

Fig. S3 CV curves in the region of 0.0-0.14 V (V *vs* RHE) for 2H MoS₂ nanosheets (a) and C-1T MoS₂ nanosheets (b).

Fig. S4 Gibbs free energy of adsorbed hydrogen (ΔG_H) for (a) 2H MoS₂ basal plane, and (b) 1T MoS₂ basal plane with around 12.5%~25% H coverage. Blue, yellow and white balls indicate Mo, S and H atoms, respectively.

According to the recent reported calculations by Jiang's group, the ΔG_H is between -0.28 and 0.13 eV at the 1T MoS₂ basal plane with around 12.5%~25% H coverage, while the ΔG_H value is about 2.0 ev for 2H MoS₂ basal plane. As we know, the optimal HER catalysts have hydrogen adsorption energies is close to zero ($\Delta G_H \approx 0$), or the binding hydrogen energy is neither too weakly nor too strongly. Fig. S4a shows the model of 1T MoS₂ basal plane with around 25% H coverage. Fig. S4b shows only one hydrogen adsorbed on the 2H MoS₂ basal plane because higher ΔG_H makes the protons bonded too weakly to the catalyst surface, thereby leading to a slower HER kinetics.

Fig. S5 The mechanism of hydrogen evolution on the surface of an electrode in acidic

solutions.

Photocatalysts	Onset overpotential [mV]	Tafel slopes [mV decade ⁻¹]	$\eta@j = 10 \text{ mA cm}^2$ [mV]	Ref.
C-1T MoS ₂	113	42.7	156	this work
2H MoS ₂	161	75.3	274	this work
Defect-rich/MoS ₂	120	50	195	1
1T-MoS ₂	135	43	187	2
O-MoS ₂	120	55	N/A	3
MoS ₂ -NR/rGO	N/A	46	N/A-	4
hierarchical MoS ₂	50	60	167	5
O-MoS ₂	120	58	N/A-	6
O-MoS ₂ /G	120	51	N/A-	6
plasma exposed MoS ₂	300	117	N/A	7
MoS ₂ nanodots	90	61	248	8
MoS ₂ dots/Au	190	74	N/A-	9
<u>P-1T</u> MoS ₂	N/A	43	153	10
MoS ₂ hollow spheres	112	74	214	11
edge-terminated MoS ₂	103	49	149	12
1T@2H-MoS ₂	42	49	64	13
CoS ₂ /MoS ₂ /CC	N/A	66	177	14
micro and ground microflakes -MoS ₂	N/A	60-70	174	15
MoS ₂ /Graphene	30	67.4	110	16
Hollow MoS ₂	N/A	48	202	17
C/MoS ₂ @G	165	46	N/A	18
Laser MoS ₂ /carbon	N/A	64	216	19
DR-MoS ₂	166	66	208	20

Table S1. Comparison of representative MoS_2 or MoS_2 -based catalytic parameters recently.

References

- J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. D. Lou and Y. Xie, *Advanced Materials*, 2013, 25, 5807-5813.
- 2. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, Journal of the American Chemical Society, 2013, 135, 10274-10277.
- J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie, *Journal of the American Chemical Society*, 2013, 135, 17881-17888.
- Y. Zhao, L. Kuai, Y. Liu, P. Wang, H. Arandiyan, S. Cao, J. Zhang, F. Li, Q. Wang, B. Geng and H. Sun, *Scientific Reports*, 2015, 5, 8722.
- J. Zhang, S. Liu, H. Liang, R. Dong and X. Feng, *Advanced Materials*, 2015, 27, 7426-7431.
- J. Guo, F. Li, Y. Sun, X. Zhang and L. Tang, *Journal of Power Sources*, 2015, 291, 195-200.
- G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai and P. M. Ajayan, *Nano letters*, 2016, 16, 1097-1103.
- 8. J. Benson, M. Li, S. Wang, P. Wang and P. Papakonstantinou, *ACS applied materials & interfaces*, 2015, 7, 14113-14122.
- D. Gopalakrishnan, D. Damien and M. M. Shaijumon, ACS nano, 2014, 8, 5297-5303.
- Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang and Z. Zhang, *Journal of the American Chemical Society*, 2016, 5, 7965–7972
- B. Guo, K. Yu, H. Li, H. Song, Y. Zhang, X. Lei, H. Fu, Y. Tan and Z. Zhu, ACS applied materials & interfaces, 2016, 8, 5517-5525.
- 12. M.-R. Gao, M. K. Y. Chan and Y. Sun, *Nat Commun*, 2015, 6, 7493.
- S. Shi, D. Gao, B. Xia, P. Liu and D. Xue, *Journal of Materials Chemistry A*, 2015, 3, 24414-24421.
- 14. C. Su, J. Xiang, F. Wen, L. Song, C. Mu, D. Xu, C. Hao and Z. Liu,

Electrochimica Acta, 2016, 212, 941-949.

- D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C.
 M. Sutter-Fella, P. Zhao, W. Gao and R. Maboudian, *Nano letters*, 2016, 16, 4047–4053.
- L. Ma, Y. Hu, G. Zhu, R. Chen, T. Chen, H. Lu, Y. Wang, J. Liang, H. Liu, C. Yan, Z. Tie, Z. Jin and J. Liu, *Chemistry of Materials*, 2016, DOI: 10.1021/acs.chemmater.6b01980.
- 17. A. Ambrosi and M. Pumera, *Acs Catalysis*, 2016, **6**, 3985-3993.
- Y. Li, J. Wang, X. Tian, L. Ma, C. Dai, C. Yang and Z. Zhou, *Nanoscale*, 2016, 8, 1676-1683.
- 19. H. Deng, C. Zhang, Y. Xie, T. Tumlin, L. Giri, S. P. Karna and J. Lin, *Journal of Materials Chemistry A*, 2016, 4, 6824-6830.
- K. Qi, S. Yu, Q. Wang, W. Zhang, J. Fan, W. Zheng and X. Cui, *Journal of Materials Chemistry A*, 2016, 4, 4025-4031.