Aluminum Chelates Supported by β-Quinolyl Enolate Ligands:

Synthesis and ROP of ε-CL

Peng Wang,^a Xiaomin Hao,^a Jianhua Cheng,^b Jianbin Chao^c and Xia Chena ^{a*}

^a School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China

^b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

^c Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China

Figu	re S1	-S14 ¹]	H and	¹³ C NMR spe	ectra	of all Al	comp	lexes				2-8
Tab com	le plexe	S1 7	Гһе	variations	of	[CL]	in	ROP	process	using	all	Al
Tab	le S2	The <i>I</i>	M _n or	polydispersi	ty in	differen	nt cor	version	(1b, 2b, 5l	b and 2c)	10
Figu	re S1	5-817	Relat	tionship betv	veen	<i>M</i> _n or p	olydi	ispersity	with ε-Cl	L conver	sion	(1b,
2b,	and	5b) .										.10-
11		,										

Figure S2 ¹³C NMR spectrum of complex 1b (75 MHz, CDCl₃)

Figure S3 ¹H NMR spectrum of complex 2b (300 MHz, CDCl₃)

Figure S4 ¹³C NMR spectrum of complex 2b (75 MHz, CDCl₃)

8.20 8.17 8.06 8.03 8.06 8.03 7.74 7.77 7.74 7.74 7.74 7.74 7.74 7.19 7.16 7.19 6.19

Figure S5¹H NMR spectrum of complex 3b (300 MHz, CDCl₃)

Figure S6 ¹³C NMR spectrum of complex 3b (75 MHz, CDCl₃)

-5.79 -5.79 -2.55

---0.48

Figure S7¹H NMR spectrum of complex 4b (300 MHz, CDCl₃)

Figure S8 ¹³C NMR spectrum of complex 4b (75 MHz, CDCl₃)

Figure S11 ¹H NMR spectrum of complex 6b (300 MHz, CDCl₃)

Figure S12 ¹³C NMR spectrum of complex 6b (75 MHz, CDCl₃)

-9.33 -7.77 -7.77 -7.77 -7.75 -7.76 -7.76 -7.76 -7.68 -7.68 -7.68 -7.68 -7.68 -7.76 -7.776 -7.777 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -7.772 -6.69 -6.69 -6.69 -6.66 -6.66 -6.66 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -7.772 -7.77

~ 1.36 − 1.08

Figure S13 ¹H NMR spectrum of complex 2c (600 MHz, CDCl₃) (* were the signals of toluene)..

Figure S14 ¹³C NMR spectrum of complex 2c (150 MHz, CDCl₃) (* were the signals of toluene).

1	b	2	b	3b		
Time (min)	Conv. (%)	Time (min)	Conv. (%)	Time (min)	Conv. (%)	
10	40	10	42	10	23	
20	71	20	61	20	43	
30	83	30	71	30	56	
40	89	40	81	40	74	
50	94	50	88	50	83	
60	96	60	92	60	91	
$k_{\rm obs} = 0.055$	55(1) min ⁻¹	$k_{\rm obs} = 0.042$	23(5) min ⁻¹	$k_{\rm obs} = 0.033$	57(6) min ⁻¹	
4	b	5	b	6	b	
Time (min)	Conv. (%)	Time (min)	Conv. (%)	Time (min)	Conv. (%)	
10	30	10	33	20	32	
20	55	20	61	40	56	
30	75	30	77	60	78	
40	82	40	88	80	84	
50	88	50	92	100	89	
60	92	60	95	120	92	
$k_{\rm obs} = 0.042$	25(6) min ⁻¹	$k_{\rm obs} = 0.02$	503 min ⁻¹	$k_{\rm obs} = 0.022$	20(3) min ⁻¹	
2	c	-				
Time (min)	Conv. (%)	-				
2	27					

Table S1 The variations of [CL] in ROP process using all Al complexes in toluene 5 mL, $[CL]_0 = 1.0$ M at 80 °C. (**1b-6b** : $[CL]_0 : [Al]_0 : [BnOH]_0 = 100 : 1 : 1$; **2c** : $[CL]_0 : [Al]_0 = 100 : 1$)

2	le
Time (min)	Conv. (%)
2	27
4	58
8	83
12	93
16	98
$k_{\rm obs} = 0.23$	34(9) min ⁻¹

	1b			2b			5b	
Conv.	$M_{\rm n,GPC}(10^{-4})$	PDI	Conv. (%)	$M_{\rm n,GPC} (10^{-4})$	PDI	Conv. (%)	$M_{n,GPC}(10^{-4})$	PDI
(%)								
40	0.58 (0.32)	1.16	42	0.63 (0.35)	1.15	33	0.54 (0.30)	1.14
71	0.76 (0.43)	1.41	61	0.75 (0.42)	1.38	61	0.74 (0.41)	1.41
83	0.84 (0.47)	1.37	71	0.89 (0.50)	1.29	77	0.89 (0.50)	1.43
89	0.87 (0.49)	1.44	81	0.94 (0.53)	1.38	88	0.96 (0.54)	1.53
94	0.89 (0.50)	1.47	88	1.03 (0.58)	1.55	92	1.01 (0.57)	1.51
96	0.93 (0.52)	1.52	92	1.09 (0.61)	1.57	95	1.05 (0.59)	1.47
	2c							

Table S2 The M_n or polydispersity in different conversion using **1b**, **2b**, **5b** and **2c** in toluene 5 mL, [CL]₀ = 1.0 M at 80 °C (**1b-6b** : [CL]₀ : [Al]₀ : [BnOH]₀ = 100 : 1 : 1; **2c** : [CL]₀ : [Al]₀ = 100 : 1)

	2c	
Conv.	$M_{\rm n,GPC} (10^{-4})$	PDI
(%)		
35	0.40 (0.22)	1.12
58	0.52 (0.29)	1.18
83	0.78 (0.44)	1.33
93	0.83 (0.46)	1.52
98	0.91 (0.51)	1.59

Figure S15 Relationship between M_n (•, obtained from GPC analysis) or polydispersity (\blacktriangle , M_w/M_n) with ε -CL conversion using **1b**/BnOH in toluene at 80 °C with a ratio of [CL]₀ : [Al]₀ : [BnOH]₀ = 100 :

1:1.

Figure S16 Relationship between M_n (•, obtained from GPC analysis) or polydispersity (\blacktriangle , M_w/M_n) with ε -CL conversion using **2b**/BnOH in toluene at 80 °C with a ratio of [CL]₀ : [Al]₀ : [BnOH]₀ = 100 : 1 : 1.

Figure S17 Relationship between M_n (•, obtained from GPC analysis) or polydispersity (\blacktriangle , M_w/M_n) with ε -CL conversion using **5b**/BnOH in toluene at 80 °C with a ratio of [CL]₀ : [Al]₀ : [BnOH]₀ = 100 : 1 : 1.