Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Magnetic behaviours dominated by the interplay of magnetic anisotropy and exchange coupling in the local Co^{II}₇ discs

En-Cui Yang,^{*, a} Zhong-Yi Liu,^a Lei Zhang,^a Na Yang,^a Xiao-Jun Zhao^{*, a, b}

Co(1)-O(9)	1.998(3)	Co(1)-O(13)	2.101(3)
Co(1)–O(22)	2.004(3)	Co(1)–O(6)	2.176(3)
Co(1)–N(6)	2.042(3)	Co(1)-O(26)	2.285(4)
Co(2)–O(3)	2.006(3)	Co(2)–O(17)	2.094(3)
Co(2)–O(21)	2.038(3)	Co(2)–O(25)	2.171(3)
Co(2)–N(7)	2.077(3)	Co(2)–O(6)	2.208(3)
Co(3)–O(14)	2.073(3)	Co(3)–O(22)	2.105(3)
Co(3)–O(24)	2.099(3)	Co(3)-O(30) ^{#1}	2.122(3)
Co(3)–O(15) ^{#2}	2.101(2)	Co(3)–O(10)	2.170(3)
Co(4)–O(23)	1.961(3)	Co(4)-O(20)#3	2.075(3)
Co(4)–O(11) ^{#1}	1.980(3)	Co(4)–O(7) ^{#1}	2.183(3)
Co(4)–N(1)	2.016(3)	Co(5)–O(5)	2.086(3)
Co(5)–O(22)	2.061(3)	Co(5)–O(24)	2.105(3)
Co(5)–O(23)	2.070(3)	Co(5)–O(8) ^{#1}	2.114(3)
Co(5)–O(21)	2.081(3)	Co(6)–O(16) ^{#2}	2.070(3)
Co(6)–O(24)	1.968(3)	Co(6)–O(7) ^{#1}	2.165(3)
Co(6)-O(31) ^{#1}	1.997(3)	Co(6)–N(2)	2.028(3)
Co(7)–O(18)	2.072(2)	Co(7)–O(4)	2.117(3)
Co(7)–O(21)	2.082(3)	Co(7)–O(23)	2.129(3)
Co(7)–O(19) ^{#3}	2.104(3)	Co(7)–O(12) ^{#1}	2.181(3)
O(9)–Co(1)–O(22)	99.00(11)	O(9)–Co(1)–O(13)	90.49(11)
O(9)–Co(1)–O(6)	83.65(11)	O(22)–Co(1)–O(13)	90.01(11)
O(9)–Co(1)–O(2)	81.10(14)	O(22)–Co(1)–N(6)	101.01(12)
N(6)-Co(1)-O(6)	89.40(11)	O(22)–Co(1)–O(6)	96.17(10)
N(6)-Co(1)-O(13)	94.31(11)	O(13)–Co(1)–O(2)	83.19(14)
N(6)-Co(1)-O(2)	79.60(15)	O(6)–Co(1)–O(2)	90.60(14)
O(3)–Co(2)–O(21)	96.84(11)	O(21)–Co(2)–N(7)	96.59(11)
O(3)–Co(2)–O(17)	90.09(11)	O(21)–Co(2)–O(17)	90.68(10)
N(7)-Co(2)-O(17)	93.14(11)	N(7)–Co(2)–O(25)	84.13(12)
O(3)–Co(2)–O(25)	82.60(12)	O(17)–Co(2)–O(25)	86.88(12)
O(21)–Co(2)–O(6)	91.28(10)	O(3)–Co(2)–O(6)	87.15(11)
O(25)–Co(2)–O(6)	91.14(11)	N(7)–Co(2)–O(6)	89.16(11)

Table S1. Selected bond distances (Å) and angles (°) for 1^{*a*}

O(24)–Co(3)–O(22)	79.15(10)	O(24)-Co(3)-O(15) ^{#2}	94.35(10)
O(14)-Co(3)-O(15)#2	92.62(10)	O(14)–Co(3)–O(22)	94.19(10)
O(14)-Co(3)-O(30)#1	85.79(11)	O(24)-Co(3)-O(30) ^{#1}	97.80(11)
O(15) ^{#2} -Co(3)-O(30) ^{#1}	86.71(11)	O(24)-Co(3)-O(10)	93.31(11)
O(22)-Co(3)-O(30)#1	89.11(11)	O(15) ^{#2} -Co(3)-O(10)	82.42(10)
O(22)-Co(3)-O(10)	102.90(10)	O(14)-Co(3)-O(10)	84.42(11)
O(23)-Co(4)-O(7) ^{#1}	95.96(11)	O(23)-Co(4)-O(11) ^{#1}	106.86(11)
O(23)-Co(4)-N(1)	114.84(12)	O(23)-Co(4)-O(20) ^{#3}	95.87(11)
N(1)-Co(4)-O(7) ^{#1}	84.24(11)	N(1)-Co(4)-O(20)#3	94.37(11)
O(11)#1-Co(4)-N(1)	137.47(12)	O(11) ^{#1} -Co(4)-O(7) ^{#1}	83.54(11)
O(11) ^{#1} -Co(4)-O(20) ^{#3}	89.23(12)	O(21)-Co(5)-O(8) ^{#1}	86.02(10)
O(22)–Co(5)–O(21)	101.90(10)	O(21)–Co(5)–O(5)	93.34(11)
O(22)–Co(5)–O(24)	80.02(10)	O(23)–Co(5)–O(24)	97.17(10)
O(22)–Co(5)–O(5)	92.72(11)	O(23)-Co(5)-O(8) ^{#1}	93.13(11)
O(22)-Co(5)-O(8) ^{#1}	87.01(11)	O(23)–Co(5)–O(21)	80.91(10)
O(5)–Co(5)–O(24)	85.77(11)	O(24)-Co(6)-O(31)#1	110.57(11)
O(24)-Co(5)-O(8) ^{#1}	94.89(11)	O(24)-Co(6)-O(16) ^{#2}	94.06(11)
O(24)-Co(6)-N(2)	112.40(12)	O(31) ^{#1} -Co(6)-O(16) ^{#2}	88.76(11)
O(31)#1-Co(6)-N(2)	136.70(12)	N(2)-Co(6)-O(16)#2	93.30(11)
O(24)-Co(6)-O(7) ^{#1}	93.17(11)	O(31) ^{#1} -Co(6)-O(7) ^{#1}	87.85(11)
N(2)-Co(6)-O(7) ^{#1}	84.78(11)	O(19) ^{#3} -Co(7)-O(4)	84.11(11)
O(18)-Co(7)-O(19)#3	93.37(10)	O(21)–Co(7)–O(23)	79.52(10)
O(18)–Co(7)–O(4)	88.94(10)	O(19) ^{#3} -Co(7)-O(23)	92.83(10)
O(21)-Co(7)-O(4)	102.37(11)	O(18)–Co(7)–O(21)	94.76(10)
O(4)–Co(7)–O(23)	87.94(10)	O(23)-Co(7)-O(12) ^{#1}	100.64(10)
O(18)-Co(7)-O(12) ^{#1}	84.00(10)	O(19) ^{#3} -Co(7)-O(12) ^{#1}	81.75(10)
O(21)-Co(7)-O(12) ^{#1}	92.78(10)		

^{*a*} Symmetry codes: ^{#1} 1 - x, y - 1/2, 1/2 - z; ^{#2} - x, -y, -z; ^{#3} 2 - x, -y, 1 - z.

Table S2. Hydrogen-bonding parameters (Å, deg) for 1 and 2^{a}

D–H···A	<i>d</i> (D–H)	D-H) $d(H\cdots A) = d(D.$		∠DHA
1				
N10–H10B…O29A ^{#1}	0.86	2.06	2.898(8)	165.2
N5–H5B…O28	0.86 2.14		2.949(6)	158.1
O21-H21…N9 ^{#2}	0.82	0.82 2.46 3.275		178.0
O24–H24A…N4 ^{#1}	0.82	2.36 3.178(2		174.0
2				
O7W-H7WA····O4 ^{#1}	0.84	2.26	2.889(17)	131.8
O7W-H7WB ····N1 ^{#2}	0.84	1.74	2.57(3)	166.8
O7W–H7WB ····N7 ^{#3}	0.84	1.92	2.73(14)	161.3

^{*a*} Symmetry codes: for $1^{\#1}x-1$, 1/2-y, z-1/2; $^{\#2}1-x$, -y, 1-z. For **2**: $^{\#1}2-x$, 1-y, 1-z; $^{\#2}x + 1/2$, y + 1/2, y + 1/2

1/2, z + 1/2;^{#3} x + 1/2, 3/2 - y, z + 1/2.

Fig. S1 3D supramolecular network of 1 formed by hydrogen-bonding interactions.

Fig. S2 Crystallographic symmetry in the local Co^{II}_7 disc of 2.

	-		
Co(1)–O(5)	2.097(11)	Co(3)–O(5) ^{#3}	2.061(10)
Co(1)–O(6)	2.105(13)	Co(3)-O(2)#6	2.067(11)
Co(2)–O(5)	2.018(11)	Co(3)–N(3)	2.17(2)
Co(2)–O(1) ^{#4}	2.086(12)	Co(3)–O(3)	2.209(12)
Co(2)–O(7)	2.227(11)	Co(3)–O(7) ^{#3}	2.301(11)
Co(3)–O(6)	2.044(9)	N(9)-Co(3) ^{#1}	1.976(13)
O(5) ^{#1} -Co(1)-O(5) ^{#2}	180.0(4)	O(6)-Co(3)-O(5) ^{#3}	83.3(5)
O(5) ^{#1} -Co(1)-O(5)	100.9(6)	O(6)-Co(3)-O(2) ^{#6}	167.8(5)
O(5) ^{#2} -Co(1)-O(5)	79.1(6)	O(5) ^{#3} -Co(3)-O(2) ^{#6}	91.1(5)
O(5) ^{#2} -Co(1)-O(6)	80.9(4)	O(6)-Co(3)-N(3)	88.8(9)
O(5)–Co(1)–O(6)	99.1(4)	O(5) ^{#3} -Co(3)-N(3)	166.7(8)
O(6)–Co(1)–O(6) ^{#3}	180.0	O(2) ^{#6} -Co(3)-N(3)	98.6(8)
O(5)-Co(2)-O(5) ^{#2}	82.9(6)	O(6)-Co(3)-O(3)	81.3(5)
O(5)-Co(2)-O(1) ^{#4}	168.9(4)	O(5) ^{#3} -Co(3)-O(3)	86.4(5)
O(5) ^{#2} -Co(2)-O(1) ^{#4}	91.1(5)	O(2) ^{#6} -Co(3)-O(3)	109.2(5)
O(1)#4-Co(2)-O(1)#5	96.2(7)	N(3)-Co(3)-O(3)	81.8(10)
O(1) ^{#4} -Co(2)-O(7) ^{#2}	85.2(5)	O(6)-Co(3)-O(7) ^{#3}	87.0(5)
O(5)–Co(2)–O(7)	87.3(4)	O(5) ^{#3} -Co(3)-O(7) ^{#3}	84.3(4)
O(5) ^{#2} -Co(2)-O(7)	85.2(4)	O(2) ^{#6} -Co(3)-O(7) ^{#3}	81.7(4)
O(1) ^{#4} -Co(2)-O(7)	101.6(4)	N(3)-Co(3)-O(7)#3	106.0(10)
O(7) ^{#2} –Co(2)–O(7)	170.0(6)	O(3)-Co(3)-O(7) ^{#3}	165.9(4)

Table S3. Selected bond distance (Å) and angles (°) for 2^{a}

^{*a*} Symmetry codes: ^{#1} x, 1 - y, z; ^{#2} 1 - x, y, 1 - z; ^{#3} 1 - x, 1 - y, 1 - z; ^{#4} 3/2 - x, y + 1/2, 1/2 - z; ^{#5} x - 1/2, y

$$+ 1/2, z + 1/2;$$
^{#6} $3/2 - x, 1/2 - y, 1/2 - z.$

Fig. S3 3D supramolecular network of 2 generated by hydrogen-bonding interactions.

Fig. S4 TG curves for 1 and 2.

Fig. S5 Simulated and experimental PXRD patterns for 1 (top) and 2 (bottom).

Fig. S6 FC and ZFC magnetizations for 1 at 50.0 Oe dc field.

Fig. S7 Temperature-dependent heat capacity for 1 and 2 measured at zero dc field.

Fig. S8 Magnetization (*M*) vs. applied dc field (*H*) hysteresis loops for 1 at the indicated temperatures.

Fig. S9 Temperature dependence of real (χ') and imaginary (χ'') components of the ac susceptibility of 1 in zero dc field with an oscillating field of 3.5 Oe over frequencies of 100–1500 Hz.

Fig. S10 Cole–Cole plots of 1 at different temperatures.

T/K	χ_0 / cm ³ mol ⁻¹	$\chi_{\infty}/ \mathrm{cm}^3 \mathrm{mol}^{-1}$	τ (s)	α	R
2.0 K	1.24	0.32	6×10 ⁻⁴	0.31	5.5×10 ⁻³
2.2 K	1.21	0.32	5×10 ⁻⁴	0.28	5.8×10 ⁻³
2.4 K	1.17	0.28	3×10-4	0.25	2.1×10 ⁻³

Table S4. Parameters obtained by fitting the ac magnetic susceptibilities between 2.0 and 2.4 K with generalized Debye-model for **1**.

 $R = \sum [(\chi'_{\rm obs} - \chi'_{\rm cal})^2 + (\chi''_{\rm obs} - \chi''_{\rm cal})^2] / \sum (\chi'_{\rm obs}^2 + \chi''_{\rm obs}^2)$

Fig. S11 Temperature dependence of real (χ') and imaginary (χ'') components of the ac susceptibility for 2 under $H_{dc} = 3000$ and $H_{ac} = 3.5$ Oe over the frequencies of 1–10 kHz.