Supplementary Information

Impact of $\{Os(pap)_2\}$ in fine-tuning the binding modes and non-innocent potential of deprotonated 2,2[']-bipyridine-3,3[']-diol[†]

Prabir Ghosh^a and Goutam Kumar Lahiri^{*a}

^{*a*}Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India E-mail: <u>lahiri@chem.iitb.ac.in</u>

Fig. S1 Experimental and simulated ESI-MS(+) spectra of 2^+ , 3^+ , 4, $5a^{2+}$, $5b^{2+}$ and 6 in CH₃CN.

Fig. S2 ORTEP diagram of 2[**6**] showing two independent molecules (**A** and **B**) in the asymmetric unit. Ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S3 DFT optimised (uB3LYP/6-31G*/LANL2DZ) structures of $\mathbf{2^+},\,\mathbf{3^+},\,\mathbf{4},\,\mathbf{5a^{2+}},\,\mathbf{5b^{2+}}$ and $\mathbf{6}.$

Fig. S4 Electronic spectra of (a) 2^+ , (b) 3^+ and (c) 3^+ as a function of pH in 7:3 CH₃CN-H₂O. Insets show the change in absorbance at 508 nm for 2^+ (a), 353 nm for 3^+ (b) and 372 nm for 3^+ (c) with the pH.

Fig. S5 ¹H-NMR and ¹H-¹H COSY NMR spectra of 2^+ (in CD₃CN).

Fig. S6 ¹H-NMR and ¹H-¹H COSY NMR spectra of $\mathbf{3}^+$ (in CD₃CN).

Fig. S7 1 H-NMR spectra of 4 (in CDCl₃).

Fig.S8 ¹H-NMR and ¹H-¹H COSY NMR spectra of $5a^{2+}$ (in CDCl₃).

Fig. S9 ¹H-NMR spectra of $\mathbf{5b}^{2+}$ (in CDCl₃).

Fig. S10 ¹H-NMR and ¹H-¹H COSY NMR spectra of **6** (in CDCl₃).

Fig. S11 TD-DFT computed molecular orbitals corresponding to electronic absorptions of 2^+ .

Fig. S12 TD-DFT computed molecular orbitals corresponding to electronic absorptions of 3^+ .

Fig. S13 TD-DFT computed molecular orbitals corresponding to electronic absorptions of 4.

Fig. S14 TD-DFT computed molecular orbitals corresponding to electronic absorptions of $5a^{2+}$.

Fig. S15 TD-DFT computed molecular orbitals corresponding to electronic absorptions of $5b^{2+}$.

Fig. S16 TD-DFT computed Molecular orbitals corresponding to electronic absorptions of 6.

Fig. S17 UV-vis-NIR spectroelectrochemical plots for the conversions of (a) $5a^{2+} \rightarrow 5a^{3+}$ and (b) $5b^{2+} \rightarrow 5b^{3+} (10^{-5} \text{ M})$ on sequential additions of $(NH_4)_2Ce(NO_3)_6(CAN) (10^{-3} \text{ M})$ up to one equivalent in CH₃CN.

Fig. S18 Mulliken spin density plots (uB3LYP/6-31G*/LANL2DZ) of 2^n , 3^n , 4^n , $5a^n$, $5b^n$ and 6^n .

Fig. S19 EPR spectra of (a) 2, (b) 3 (c) 5a⁺ (d) 5b⁺, (e) 6⁻.

Fig. S20 EPR spectra of coulometrically generated (a) 2^{2+} , (b) $5a^{3+}$ and (c) 6^+ .

	2 ⁺			3+	
Bond angle (deg)	X-ray	DFT	Bond angle (deg)	X-ray	DFT
N1-Os1-N2	77.25(14)	76.967	N1-Os1-O2	85.52(9)	84.935
N1-Os1-N3	95.54(14)	94.037	N1-Os1-N3	96.46(10)	94.697
N1-Os1-N5	169.94(14)	168.920	N1-Os1-N5	171.81(10)	169.673
N1-Os1-N6	98.65(14)	98.364	N1-Os1-N6	94.59(10)	97.606
N1-Os1-N8	85.98(14)	85.066	N1-Os1-N8	89.72(10)	86.746
N2-Os1-N3	89.58(14)	85.350	O2-Os1-N3	86.48(9)	88.777
N2-Os1-N5	97.76(14)	98.807	O2-Os1-N5	91.74(9)	90.879
N2-Os1-N6	169.74(14)	168.383	O2-Os1-N6	166.97(10)	165.897
N2-Os1-N8	94.46(14)	93.650	O2-Os1-N8	90.71(10)	90.683
N3-Os1-N5	75.54(15)	75.304	N3-Os1-N5	75.64(11)	75.744
N3-Os1-N6	100.23(14)	105.721	N3-Os1-N6	106.43(10)	104.771
N3-Os1-N8	175.92(14)	178.789	N3-Os1-N8	172.98(9)	178.408
N5-Os1-N6	87.68(14)	87.624	N5-Os1-N6	89.81(10)	88.747
N5-Os1-N8	103.24(14)	105.547	N5-Os1-N8	98.04(11)	102.770
N6-Os1-N8	75.77(14)	75.235	N5-Os1-N1	171.81(10)	169.673
O1-H1 O2	157.4	171.488	O1-H1 N2	148.0	148.665
C4-O1-H1	109.5	110.914	С4-О1-Н1	109.5	106.459

Table S1Experimental and DFT calculated (B3LYP/6-31G*/LANL2DZ) selected bondangles (deg) for 2^+ and 3^+

Table S2 Experimental and DFTcalculated (B3LYP/6-31G*/LANL2DZ) selected bond angles(deg) for $[5a](ClO_4)_2$ ·CH₂Cl₂ and 2[6].

5a ²⁺		2[6]			
Bond angle (deg)	X-ray	DFT	Bond angle (deg)	X-ray	DFT
N1-Os1-N3	76.0(3)	76.275		Molecule A	
N1-Os1-N4	103.9(3)	105.541	N1-Os1-N3	77.15(12)	76.326
N1-Os1-N6	172.5(3)	175.779	N1-Os1-N4	104.89(12)	104.327
N1-Os1-N7	100.2(3)	97.089	N1-Os1-N6	177.78(11)	179.189
N1-Os1-O2	85.6(2)	88.483	N1-Os1-O1	90.97(11)	89.057
N3-Os1-N4	96.5(3)	94.674	N1-Os1-O2	86.90(10)	90.365
N3-Os1-N6	96.5(3)	99.747	N3-Os1-N4	102.33(12)	100.242
N3-Os1-N7	166.2(2)	167.051	N3-Os1-N6	101.37(12)	104.068
N3-Os1-O2	85.4(2)	87.924	N3-Os1-O1	167.30(11)	164.212
N4-Os1-N6	76.3(3)	75.995	N3-Os1-O2	89.97(11)	89.679
N4-Os1-N7	97.2(3)	97.845	N4-Os1-N6	77.00(12)	76.325
N4-Os1-O2	170.5(3)	165.961	N4-Os1-O1	84.91(11)	89.015
N6-Os1-O2	94.2(3)	89.970	N4-Os1-O2	164.49(10)	163.81
N6-Os1-N7	87.1(3)	86.534	N6-Os1-O1	90.36(11)	90.475
N7-Os1-O2	81.1(2)	80.721	N6-Os1-O2	91.46(11)	88.930
N8-Os2-N10	76.4(3)	76.053	O1-Os1-O2	84.83(10)	84.403
N8-Os2-N11	101.9(3)	104.403		Molecule B	
N8-Os2-N13	174.8(3)	176.395	N7-Os2-N9	76.54(12)	-
N8-Os2-N14	97.2(2)	94.894	N7-Os2-N10	105.15(12)	-

N8-Os2-O1	82.3(2)	80.095	N7-Os2-N12	178.25(11)	-
N10-Os2-N11	102.3(3)	99.854	N7-Os2-O3	89.60(11)	-
N10-Os2-N13	99.1(3)	100.343	N7-Os2-O4	88.47(11)	-
N10-Os2-N14	166.6(3)	166.115	N9-Os2-N10	98.56(12)	-
N10-Os2-O1	85.1(3)	86.607	N9-Os2-N12	103.64(12)	-
N11-Os2-N13	76.2(3)	76.089	N9-Os2-O3	164.89(11)	-
N11-Os2-N14	90.4(2)	92.538	N9-Os2-O4	88.64(11)	-
N11-Os2-O1	172.1(2)	172.817	N10-Os2-N12	76.57(12)	-
N13-Os2-N14	87.8(2)	88.641	N10-Os2-O3	90.78(11)	-
N13-Os2-O1	100.1(3)	99.781	N10-Os2-O4	165.73(11)	-
N14-Os2-O1	82.4(2)	81.409	N12-Os2-O3	90.03(11)	-
			N12-Os2-O4	89.80(11)	-
			O3-Os2-O4	84.95(9)	-

Table S3TD-DFT (B3LYP/6-31G*/LANL2DZ/CPCM/CH_3CN) calculated electronic transitions for 2^+ ,

3⁺, **4**, **5a**²⁺, **5b**²⁺ and **6**

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	λ /nm (expt.)	λ /nm (DFT)	Transition	Character
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(\varepsilon/dm^3 mol^{-1} cm^1)$	(<i>f</i>)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$2^{+}(S=0)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	818 (220)	836 (0.0043)	HOMO→LUMO(0.70)	$HL(\pi) \rightarrow pap(\pi^*) / Os(d\pi)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	508(2620)	481(0.190)	HOMO-2 \rightarrow LUMO+1(0.61)	$Os(d\pi)/pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	403(2420)	418(0.232)	HOMO-1 \rightarrow LUMO+2(0.68)	$\text{HL}(\pi) \rightarrow \text{HL}(\pi^*) / \text{pap}(\pi^*)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	345(5040)	376(0.329)	HOMO-5 \rightarrow LUMO+1(0.41)	HL(π)/Os(d π) \rightarrow pap(π^*)/Os(d π)
303(4760) 320(0.105) HOMO-10→LUMO (0.46) HL(π) → pap(π*) 224(7080) 188(0.155) HOMO-10→LUMO+5 (0.26) HL(π) → pap(π*) 188(0.155) HOMO-10→LUMO+5 (0.26) HL(π) → pap(π*) 3' (S = 0) 3' (S = 0) 707(1330) 730(0.014) HOMO-1→LUMO(0.59) Os(dπ)/pap(π)→pap(π*) 561(5150) 596(0.045) HOMO-1→LUMO(10.23) HL(π)/ Os(dπ)→pap(π*) 456(6740) 469(0.146) HOMO-1→LUMO+1(0.61) pap(π)/ Os(dπ) 334(13660) 364(0.164) HOMO-1→LUMO+1(0.61) pap(π)/ Pap(π*)/ Os(dπ) 333(19620) 323(0.171) HOMO-1→LUMO+3(0.64) Os(dπ)/pap(π)→pap(π*) 268(15950) 223(0.116) HOMO-1→LUMO+3(0.45) pap(π) → pap(π*) HOMO-6→LUMO+10.3(0.45) pap(π) → pap(π*) HL(π)/ pap(π) → pap(π*) HOMO-6→LUMO+5(0.24) pap(π) → pap(π*) HOMO-1→LUMO+5(0.23) HL(π)/ pap(π) → pap(π*) 223(30840) 189(0.130) HOMO-1→LUMO+3(0.23) HL(π)/ pap(π) → pap(π*) HOMO-2→LUMO+1(0.33) Os(dπ)/L(π) / pap(π) → pap(π*) 622(4810) 697(0.038) HOMO-1→LUMO+1(0.58) Os(dπ)/L(π) / pap(π) → pap(π*) HOMO-2→LUMO+1(0.53) Os(dπ)/L(π) / pap(π) → pap(π*)<			HOMO-1 \rightarrow LUMO+2(0.13)	$HL(\pi) \rightarrow HL(\pi^*) / pap(\pi^*)$
$\begin{array}{c} \text{HOMO-2}{\rightarrow}\text{LUMO}+4 (0.12) \\ \text{Pap}(\pi) \rightarrow \text{pap}(\pi^{*}) \\ \text{HOMO-10}{\rightarrow}\text{LUMO}+5 (0.26) \\ \text{HL}(\pi) \rightarrow \text{pap}(\pi^{*}) \\ \text{pap}(\pi) \rightarrow Pap$	303(4760)	320(0.105)	HOMO-10 \rightarrow LUMO (0.46)	$HL(\pi) \rightarrow pap(\pi^*)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			HOMO-2 \rightarrow LUMO+4 (0.12)	$Os(d\pi)/pap(\pi) \rightarrow pap(\pi^*)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	224(7080)	188(0.155)	HOMO-10 \rightarrow LUMO+5 (0.26)	$HL(\pi) \rightarrow pap(\pi^*)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			HOMO-9 \rightarrow LUMO+10 (0.24)	$pap(\pi) \rightarrow pap(\pi^*) / HL(\pi^*)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$3^+(S=0)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	707(1330)	730(0.014)	HOMO-1 \rightarrow LUMO(0.59)	$Os(d\pi)/pap(\pi) \rightarrow pap(\pi^*)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	561(5150)	596(0.045)	HOMO \rightarrow LUMO+1(0.44)	HL(π)/ Os(d π) \rightarrow pap(π^*)/ Os(d π)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			HOMO \rightarrow LUMO (0.23)	HL(π)/ Os(d π) \rightarrow pap(π^*)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	456(6740)	469(0.146)	HOMO-2 \rightarrow LUMO+1(0.55)	HL(π)/Os(d π) \rightarrow pap(π^*)/Os(d π)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	384(13660)	364(0.164)	HOMO-4 \rightarrow LUMO+1(0.61)	$pap(\pi)/ HL(\pi) \rightarrow pap(\pi^*)/ Os(d\pi)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	333(19620)	323(0.171)	HOMO-1 \rightarrow LUMO+3(0.64)	$Os(d\pi)/pap(\pi) \rightarrow pap(\pi^*)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	268(15950)	223(0.116)	HOMO-11 \rightarrow LUMO+3(0.45)	$pap(\pi) \rightarrow pap(\pi^*)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		100(0.100)	$HOMO-9 \rightarrow LUMO+5(0.24)$	$pap(\pi) \rightarrow HL(\pi^*)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	223(30840)	189(0.130)	$HOMO-15 \rightarrow LUMO+3(0.23)$	HL(π)/ pap(π) \rightarrow pap(π *)
HOMO-10 \rightarrow LUMO+6(0.14)HL(π) \rightarrow pap(π^*)4(S = 0)622(4810)697(0.038)HOMO-1 \rightarrow LUMO(0.44)L(π)/Os(d π) /pap(π) \rightarrow pap(π^*)HOMO-2 \rightarrow LUMO+1(0.33)Os(d π)/L(π) /pap(π) \rightarrow pap(π^*)/Os(d π)516(8780)534(0.127)HOMO-2 \rightarrow LUMO+1(0.58)Os(d π) /L(π) /pap(π) \rightarrow pap(π^*)/Os(d π)388(13870)382(0.141)HOMO-7 \rightarrow LUMO(0.70)L(π) \rightarrow pap(π^*)340(22350)339(0.117)HOMO-7 \rightarrow LUMO+1(0.64)L(π) \rightarrow pap(π^*)/Os(d π)306(26210)301(0.165)HOMO-3 \rightarrow LUMO+3(0.60)Os(d π) / pap(π) \rightarrow pap(π^*)HOMO-16 \rightarrow LUMO(0.24)pap(π) \rightarrow pap(π^*)			HOMO-6 \rightarrow LUMO+13(0.15)	$pap(\pi) \rightarrow HL(\pi^*)/pap(\pi^*)$
$4(3 = 0)$ $622(4810)$ $697(0.038)$ HOMO-1 \rightarrow LUMO(0.44) $L(\pi)/Os(d\pi)/pap(\pi) \rightarrow pap(\pi^*)$ $HOMO-2 \rightarrow$ LUMO+1(0.33) $Os(d\pi)/L(\pi)/pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$ $516(8780)$ $534(0.127)$ HOMO-2 \rightarrow LUMO+1(0.58) $Os(d\pi)/L(\pi)/pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$ $388(13870)$ $382(0.141)$ HOMO-7 \rightarrow LUMO(0.70) $L(\pi) \rightarrow pap(\pi^*)$ $340(22350)$ $339(0.117)$ HOMO-7 \rightarrow LUMO+1(0.64) $L(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$ $306(26210)$ $301(0.165)$ HOMO-3 \rightarrow LUMO+3(0.60) $Os(d\pi)/pap(\pi) \rightarrow pap(\pi^*)$ $HOMO-16 \rightarrow$ LUMO(0.24) $pap(\pi) \rightarrow pap(\pi^*)$ $POMO-16 \rightarrow$ LUMO(0.24) $Pap(\pi) \rightarrow pap(\pi^*)$			$\frac{\text{HOMO-10} \rightarrow \text{LUMO+6}(0.14)}{4(S-0)}$	$HL(\pi) \rightarrow pap(\pi^*)$
$622(4810)$ $697(0.038)$ HOMO-1 \rightarrow LUMO(0.44) $L(\pi)/Os(d\pi) /pap(\pi) \rightarrow pap(\pi^*)$ $516(8780)$ $534(0.127)$ HOMO-2 \rightarrow LUMO+1(0.33) $Os(d\pi)/L(\pi) /pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$ $516(8780)$ $534(0.127)$ HOMO-2 \rightarrow LUMO+1(0.58) $Os(d\pi)/L(\pi) /pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$ $388(13870)$ $382(0.141)$ HOMO-7 \rightarrow LUMO(0.70) $L(\pi) \rightarrow pap(\pi^*)$ $340(22350)$ $339(0.117)$ HOMO-7 \rightarrow LUMO+1(0.64) $L(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$ $306(26210)$ $301(0.165)$ HOMO-3 \rightarrow LUMO+3(0.60) $Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$ $POMO-16 \rightarrow$ LUMO(0.24) $Pap(\pi) \rightarrow pap(\pi^*)$			4(3=0)	
HOMO-2 \rightarrow LUMO+1(0.33)Os(d\pi)/L(\pi) /pap(\pi) \rightarrow pap(π^*)/Os(d\pi)516(8780)534(0.127)HOMO-2 \rightarrow LUMO+1(0.58)Os(d\pi)/L(\pi) /pap(\pi) \rightarrow pap(π^*)/Os(d\pi)388(13870)382(0.141)HOMO-7 \rightarrow LUMO(0.70)L(π) \rightarrow pap(π^*)340(22350)339(0.117)HOMO-7 \rightarrow LUMO+1(0.64)L(π) \rightarrow pap(π^*)/Os(d π)306(26210)301(0.165)HOMO-3 \rightarrow LUMO+3(0.60)Os(d π) / pap(π) \rightarrow pap(π^*)HOMO-16 \rightarrow LUMO(0.24)pap(π) \rightarrow pap(π^*)	622(4810)	697(0.038)	HOMO-1 \rightarrow LUMO(0.44)	$L(\pi)/Os(d\pi)/pap(\pi) \rightarrow pap(\pi^*)$
516(8780) 534(0.127) HOMO-2 \rightarrow LUMO+1(0.58) Os(d\pi) /L(\pi) /pap(\pi) \rightarrow pap(π^*)/Os(d π) 388(13870) 382(0.141) HOMO-7 \rightarrow LUMO(0.70) L(π) \rightarrow pap(π^*) 340(22350) 339(0.117) HOMO-7 \rightarrow LUMO+1(0.64) L(π) \rightarrow pap(π^*)/Os(d π) 306(26210) 301(0.165) HOMO-3 \rightarrow LUMO+3(0.60) Os(d π) / pap(π) \rightarrow pap(π^*) POMO-16 \rightarrow LUMO(0.24) Pap(π^*) Pap(π^*)	51((0700))	524(0.107)	HOMO-2 \rightarrow LUMO+1(0.33)	$Os(d\pi)/L(\pi)/pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
388(13870) 382(0.141) HOMO-7 \rightarrow LUMO(0.70) L(π) \rightarrow pap(π^*) 340(22350) 339(0.117) HOMO-7 \rightarrow LUMO+1(0.64) L(π) \rightarrow pap(π^*)/Os(d π) 306(26210) 301(0.165) HOMO-3 \rightarrow LUMO+3(0.60) Os(d π) / pap(π) \rightarrow pap(π^*) HOMO-16 \rightarrow LUMO(0.24) Pap(π) \rightarrow pap(π^*) 204(24400) 201(0.001) HOMO-16 - LUMO(0.24) Pap(π)	516(8780)	534(0.127)	HOMO-2 \rightarrow LUMO+1(0.58)	$Os(d\pi) / L(\pi) / pap(\pi) \rightarrow pap(\pi^*) / Os(d\pi)$
$340(22350)$ $339(0.117)$ HOMO-7 \rightarrow LUMO+1(0.64) L(π) \rightarrow pap(π^*)/Os(d π) $306(26210)$ $301(0.165)$ HOMO-3 \rightarrow LUMO+3(0.60) Os(d π) / pap(π) \rightarrow pap(π^*) HOMO-16 \rightarrow LUMO(0.24) pap(π) \rightarrow pap(π^*)	388(13870)	382(0.141)	HOMO-7 \rightarrow LUMO(0.70)	$L(\pi) \rightarrow pap(\pi^*)$
$306(26210) \qquad 301(0.165) \qquad HOMO-3 \rightarrow LUMO+3(0.60) \qquad Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*) HOMO-16 \rightarrow LUMO(0.24) \qquad pap(\pi) \rightarrow pap(\pi^*) 201(0.001) \qquad 201(0.001) \qquad 0.001 $	340(22350)	339(0.117)	HOMO-7 \rightarrow LUMO+1(0.64)	$L(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
HOMO-16 \rightarrow LUMO(0.24) pap(π) \rightarrow pap(π *)	306(26210)	301(0.165)	HOMO-3 \rightarrow LUMO+3(0.60)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$
			HOMO-16 \rightarrow LUMO(0.24)	$pap(\pi) \rightarrow pap(\pi^*)$
284(24490) 281(0.081) HOMO-3 \rightarrow LUMO+4(0.55) Os(d π) / pap(π) \rightarrow pap(π *)	284(24490)	281(0.081)	HOMO-3 \rightarrow LUMO+4(0.55)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$
222(46320) 220(0.148) HOMO-4 \rightarrow LUMO+9(0.40) L(π) \rightarrow pap(π^*)/L(π^*)	222(46320)	220(0.148)	HOMO-4 \rightarrow LUMO+9(0.40)	$L(\pi) \rightarrow pap(\pi^*)/L(\pi^*)$
$\frac{\text{HOMO-6} \rightarrow \text{LUMO+7}(0.17)}{\text{E}^{-2^{+}(S-O)}} L(\pi) \rightarrow \text{pap}(\pi^{*})$			HOMO-6 \rightarrow LUMO+7(0.17)	$L(\pi) \rightarrow pap(\pi^*)$
5a (3 = 0) $884(1860) = 788(0,000) = 10040 + 110520 = (3)(0,1)(1,0)(1,0)(1,0)(1,0)(1,0)(1,0)(1,0$	<u>991(1960)</u>	700(0.000)	$\frac{\mathbf{5a}^{-1}(5=0)}{100000000000000000000000000000000000$	$= \cos(-1)/3)/3/3)/a(-1)/3/a)/a(-1)/a(-1)/a)/a(-1)/a)/a(-1)/a(-1)/a)/a(-1)/a)/a(-1)/a(-1)/a(-1)/a)/a(-1)/a(-1)/a)/a(-1)/a$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	004(1000)	/00(0.009)	$HOMO \rightarrow LUMO(0.21)$	$pap(\pi)/Os(d\pi)/L(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
$fO(0.51) \qquad pap(\pi)/Os(a\pi)/L(\pi) \rightarrow pap(\pi^*)$ $fO(1.3640) \qquad 722(0.017) \qquad HOMO(1.51) \qquad Os(d\pi)/L(\pi)/pap(\pi) \rightarrow pap(\pi^*)$	691(3640)	722(0.017)	$HOMO = 1 \times UMO(0.31)$	$\operatorname{pap}(\pi)/\operatorname{Os}(\mathrm{d}\pi)/\operatorname{L}(\pi) \to \operatorname{pap}(\pi^*)$
$(1,0,0,0) \qquad (1,22(0,0,17) \text{HOMO-1} \rightarrow \text{LOMO}(0.40) \qquad \text{Os}(un)/L(n)/pap(n) \rightarrow pap(n')$	071(3070)	/22(0.017)	$110000-1 \rightarrow 10000(0.40)$	$O_{O}(un)/L(n)/pap(n) \rightarrow pap(n^{*})$

		$HOMO \rightarrow LUMO(0.19)$	$pap(\pi)/Os(d\pi) \rightarrow pap(\pi^*)$
574(12140)	565(0.046)	HOMO-1→LUMO+3(0.30)	$Os(d\pi) / L(\pi) / pap(\pi) \rightarrow pap(\pi^*) / Os(d\pi)$
		HOMO \rightarrow LUMO+3(0.20)	$pap(\pi)/Os(d\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
542(12910)	519(0.057)	HOMO-4 \rightarrow LUMO(0.31)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$
		HOMO \rightarrow LUMO+3(0.30)	$pap(\pi)/Os(d\pi) \rightarrow pap(\pi^*)$
506(12790)	501(0.079)	HOMO-3→LUMO(0.30)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$
		HOMO-5 \rightarrow LUMO+1(0.20)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*) / Os(d\pi)$
458(12650)	487(0.089)	HOMO-4 \rightarrow LUMO+1(0.48)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*) / Os(d\pi)$
		HOMO-6 \rightarrow LUMO+1(0.28)	$pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
318(35550)	358(0.344)	HOMO-10 \rightarrow LUMO+2(0.34)	$pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)/L(\pi^*)$
		HOMO-8 \rightarrow LUMO+3(0.34)	$pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
220(57320)	292(0.065)	HOMO-3 \rightarrow LUMO+6(0.27)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$
		HOMO-18 \rightarrow LUMO(0.12)	$pap(\pi) \rightarrow pap(\pi^*)$
		$5b^{2+}(S=0)$	
884(1600)	778(0.002)	HOMO-2 \rightarrow LUMO+1(0.52)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$
694(3160)	700(0.018)	HOMO-1 \rightarrow LUMO+1(0.44)	$Os(d\pi) / L(\pi) / pap(\pi) \rightarrow pap(\pi^*)$
		HOMO \rightarrow LUMO+1(0.31)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$
579(10420)	572(0.058)	HOMO-1 \rightarrow LUMO(0.32)	$Os(d\pi) / L(\pi) / pap(\pi) \rightarrow pap(\pi^*)$
		HOMO-2 \rightarrow LUMO(0.18)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$
544(12350)	507(0.049)	HOMO-1 \rightarrow LUMO+3(0.37)	$Os(d\pi) / L(\pi) / pap(\pi) \rightarrow pap(\pi^*) / Os(d\pi)$
		HOMO-4 \rightarrow LUMO+3(0.25)	$Os(d\pi) / pap(\pi) / L(\pi) \rightarrow pap(\pi^*)$
509(13370)	492(0.068)	HOMO-6 \rightarrow LUMO(0.45)	$Os(d\pi) / L(\pi) / pap(\pi) \rightarrow pap(\pi^*)$
		HOMO-5 \rightarrow LUMO(0.26)	$Os(d\pi) / pap(\pi) \rightarrow pap(\pi^*)$
463(12460)	417(0.094)	HOMO-6 \rightarrow LUMO+2(0.67)	$Os(d\pi) / L(\pi) / pap(\pi) \rightarrow L(\pi^*)$
310(34200)	361(0.213)	HOMO-9 \rightarrow LUMO+2(0.43)	$pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
		HOMO-9 \rightarrow LUMO+2(0.38)	$pap(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
224(55820)	244(0.045)	HOMO-7 \rightarrow LUMO+7(0.27)	$pap(\pi) \rightarrow pap(\pi^*)$
		HOMO-10 \rightarrow LUMO+6(0.26)	$pap(\pi) \rightarrow pap(\pi^*)$
		6 (S=0)	
648(4100)	719(0.029)	HOMO-2 \rightarrow LUMO(0.56)	$\operatorname{pap}(\pi)/L'(\pi)/\operatorname{Os}(d\pi) \rightarrow \operatorname{pap}(\pi^*)/\operatorname{Os}(d\pi)$
525(5910)	549(0.15)	HOMO-2 \rightarrow LUMO+1(0.57)	$\operatorname{pap}(\pi)/\operatorname{L}^{/}(\pi)/\operatorname{Os}(\mathrm{d}\pi) \rightarrow \operatorname{pap}(\pi^*)/\operatorname{Os}(\mathrm{d}\pi)$
484(4780)	480(0.097)	HOMO-1 \rightarrow LUMO+1(0.59)	$L'(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
382(8340)	396(0.190)	HOMO-6 \rightarrow LUMO(0.67)	$L'(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
342(13230)	339(0.168)	HOMO-6 \rightarrow LUMO+1(0.53)	$L'(\pi) \rightarrow pap(\pi^*)/Os(d\pi)$
296(19990)	223(0.404)	HOMO-3 \rightarrow LUMO+9(0.42)	$L'(\pi)/Os(d\pi)/pap(\pi) \rightarrow pap(\pi^*)$
		HOMO-2 \rightarrow LUMO+9(0.14)	$pap(\pi)/L'(\pi) \rightarrow pap(\pi^*)$
220(42510)	190(0.201)	HOMO-15 \rightarrow LUMO+2(0.31)	$pap(\pi) \rightarrow pap(\pi^*)$
		HOMO-6 \rightarrow LUMO+11(0.20)	$L'(\pi) \rightarrow L'(\pi^*)/pap(\pi^*)$

Expt.	TZVP+LANL2DZ			6-31G*+ LANL2DZ	
	PBE	PBE0	BP86	B3LYP	B3LYP
818(220)	754(0.001)	785(0.009)	745(0.001)	869(0.007)	836(0.004)
508(2620)	505(0.073)	460(0.219)	505(0.0738)	476(0.197)	481(0.190)
403(2420)	404(0.194)	429(0.162)	404(0.154)	445(0.208)	418(0.232)
345(5040)	392(0.206)	389(0.186)	393(0.214)	364(0.162)	376(0.329)
303(4760)	299(0.052)	290(0.161)	359(0.068)	303(0.145)	320(0.105)
224(7080)	237(0.069)	222(0.176)	236(0.080)	191(0.217)	188(0.155)

Table S4 TD-DFT calculated (CPCM/CH₃CN) electronic transitions for 2^+ by multiple methods and basis set

МО	Energy (eV)	% Composition		
		Os	pap	HL
LUMO+5	-3.228	2	92	6
LUMO+4	-4.209	4	89	7
LUMO+3	-4.287	5	86	10
LUMO+2	-4.423	6	25	70
LUMO+1	-5.714	24	72	4
LUMO	-6.113	12	84	4
НОМО	-7.443	1	4	96
HOMO-1	-8.302	1	1	99
НОМО-2	-8.740	69	18	13
НОМО-3	-8.821	39	17	45
HOMO-4	-9.334	54	40	6
HOMO-5	-9.443	33	16	50

Table S5 Calculated (B3LYP/6-31G*/LANL2DZ) MO compositions for 2^+ in S =0 state

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy (eV)	% Composition					
		Os	pap	HL			
α-ΜΟ							
LUMO+5	-6.738	4	94	2			
LUMO+4	-6.902	1	42	56			
LUMO+3	-7.011	1	66	92			
LUMO+2	-8.124	12	13	76			
LUMO+1	-8.426	19	77	3			
LUMO	-8.712	7	77	16			
SOMO	-11.491	65	29	6			
HOMO-1	-11.807	50	38	12			
НОМО-2	-11.973	13	84	3			
НОМО-3	-12.015	58	36	6			
HOMO-4	-12.079	8	88	3			
HOMO-5	-12.086	19	78	3			
	β-ΜΟ)	I	•			
LUMO+5	-6.745	4	92	4			
LUMO+4	-6.807	2	86	12			
LUMO+3	-7.946	9	7	84			
LUMO+2	-8.428	19	77	3			
LUMO+1	-8.674	9	82	9			
LUMO	-10.416	1	2	97			
НОМО	-11.479	65	28	6			
HOMO-1	-11.735	53	29	18			
НОМО-2	-11.964	7	90	2			
НОМО-3	-12.015	58	37	5			
HOMO-4	-12.073	5	93	2			
HOMO-5	-12.082	18	80	2			

Table S6 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 2^{2+} in S = 1/2 state

МО	Energy (eV)	% Composition					
		Os	pap	HL			
α-ΜΟ							
LUMO+5	-0.151	3	94	4			
LUMO+4	-0.289	2	12	86			
LUMO+3	-1.030	5	95	1			
LUMO+2	-1.078	4	93	3			
LUMO+1	-1.609	8	5	87			
LUMO	-2.613	28	67	4			
SOMO	-3.780	12	84	4			
HOMO-1	-4.981	1	2	97			
НОМО-2	-5.309	74	18	8			
НОМО-3	-5.661	54	21	24			
HOMO-4	-5.838	53	42	5			
HOMO-5	-6.406	3	2	96			
	β-ΜΟ)					
LUMO+5	-0.273	2	9	89			
LUMO+4	-0.955	4	95	1			
LUMO+3	-0.992	4	93	3			
LUMO+2	-1.570	9	8	83			
LUMO+1	-2.201	17	80	3			
LUMO	-2.355	10	83	8			
НОМО	-4.969	2	2	96			
HOMO-1	-5.314	72	20	7			
НОМО-2	-5.516	59	21	21			
НОМО-3	-5.904	63	32	6			
HOMO-4	-6.394	3	10	87			
HOMO-5	-6.407	4	46	51			

Table S7 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 2 in S = 1/2 state

МО	Energy (eV)	% Composition		
		Os	pap	HL
LUMO+5	2.705	5	20	75
LUMO+4	2.432	3	13	84
LUMO+3	2.228	4	88	8
LUMO+2	2.111	4	87	9
LUMO+1	1.102	9	5	87
LUMO	0.831	25	71	4
НОМО	-0.547	8	88	4
HOMO-1	-2.090	72	22	6
НОМО-2	-2.359	23	6	71
НОМО-3	-2.470	50	12	38
HOMO-4	-2.661	53	42	5
HOMO-5	-3.288	0	99	1

Table S8 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 2^{-} in S = 0 state, ($E_{S=1}-E_{S=0}=659 \text{ cm}^{-1}$)

	α-ΜΟ						
НОМО	HOMO-1	НОМО-2	НОМО-3				
LUMO	LUMO+1	LUMO+2	LUMO+3				

МО	Energy(eV)	% Composition		
		Os	pap	HL
LUMO+5	-3.319	5	12	83
LUMO+4	-3.880	3	88	8
LUMO+3	-4.013	4	89	7
LUMO+2	-4.307	3	14	83
LUMO+1	-5.205	26	64	9
LUMO	-5.804	14	82	3
НОМО	-8.057	22	21	58
HOMO-1	-8.443	61	24	15
НОМО-2	-8.842	38	18	43
НОМО-3	-8.947	53	33	15
НОМО-4	-9.437	1	52	47
НОМО-5	-9.456	1	96	3

Table S9 Calculated (B3LYP/6-31G*/LANL2DZ) MO compositions for 3^+ in S = 0 state

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

Table S10 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 3^{2+} in S	S = 1	1/2
---	-------	-----

state

МО	Energy (eV)	% Composition					
		Os	pap	HL			
α-ΜΟ							
LUMO+5	-6.505	4	12	84			
LUMO+4	-6.803	4	89	7			
LUMO+3	-7.011	2	92	5			
LUMO+2	-7.566	2	5	93			
LUMO+1	-8.619	19	4	77			
LUMO	-8.864	10	87	3			
SOMO	-11.633	9	5	86			
HOMO-1	-11.832	44	45	11			
НОМО-2	-12.033	9	90	1			
НОМО-3	-12.082	3	95	2			
HOMO-4	-12.113	30	48	22			
НОМО-5	-12.227	1	99	0			
β-ΜΟ							
LUMO+5	-6.803	4	92	4			
LUMO+4	-6.939	3	91	6			
LUMO+3	-7.488	2	5	92			
LUMO+2	-8.478	25	69	7			
LUMO+1	-8.797	14	83	3			
LUMO	-10.169	32	22	46			
НОМО	-11.618	37	22	40			
HOMO-1	-11.713	42	25	33			
НОМО-2	-11.997	23	73	5			
НОМО-3	-12.078	5	94	1			
HOMO-4	-12.154	24	72	4			
HOMO-5	-12.224	1	99	1			

МО	Energy	% Composition		
	(eV)	Os	pap	HL
	α-	MO	1	l
LUMO+5	-0.116	5	10	85
LUMO+4	-0.529	4	22	73
LUMO+3	-0.732	4	90	6
LUMO+2	-0.811	4	78	18
LUMO+1	-1.653	5	6	90
LUMO	-2.136	33	56	11
SOMO	-3.503	14	83	3
HOMO-1	-4.921	50	22	28
HOMO-2	-4.986	52	33	15
НОМО-3	-5.586	64	31	15
HOMO-4	-5.817	15	13	72
HOMO-5	-6.314	3	94	3
	β-	MO		
LUMO+5	-0.496	4	34	61
LUMO+4	-0.653	4	89	7
LUMO+3	-0.745	4	66	30
LUMO+2	-1.634	5	13	82
LUMO+1	-1.810	17	74	9
LUMO	-2.017	12	78	10
НОМО	-4.884	54	19	27
HOMO-1	-5.005	59	25	16
HOMO-2	-5.452	64	25	10
НОМО-3	-5.833	18	15	67
HOMO-4	-6.155	4	91	5
HOMO-5	-6.304	8	89	4

Table S11 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 3 in S =1/2 state

МО	Energy (eV)	% Composition		
		Os	pap	HL
LUMO+5	2.602	6	83	11
LUMO+4	2.545	4	48	48
LUMO+3	2.484	3	53	44
LUMO+2	2.044	4	10	86
LUMO+1	1.344	28	63	10
LUMO	0.973	4	6	90
НОМО	-0.238	8	88	4
HOMO-1	-1.692	64	27	9
HOMO-2	-1.792	59	21	19
HOMO-3	-2.274	61	32	6
НОМО-4	-3.004	2	91	7
HOMO-5	-3.034	7	18	74

Table S12 Calculated (B3LYP/6-31G*/LANL2DZ) MO compositions for 3^{-} in S = 0 state,

 $(E_{S=1}-E_{S=0}=1140 \text{ cm}^{-1})$

МО	Energy(eV)	% Composition		
		Os	pap	L
LUMO+5	-0.374	10	82	7
LUMO+4	-0.454	2	97	1
LUMO+3	-1.106	4	95	1
LUMO+2	-1.143	3	95	2
LUMO+1	-2.394	31	61	8
LUMO	-2.977	13	85	2
НОМО	-5.023	9	13	78
HOMO-1	-5.110	31	27	42
НОМО-2	-5.324	43	18	39
НОМО-3	-5.554	63	19	17
НОМО-4	-5.669	6	11	83
НОМО-5	-5.994	12	06	82

Table S13 Calculated (B3LYP/6-31G*/LANL2DZ) MO compositions for **4** in S = 0 state

НОМО	HOMO-1	HOMO-2	НОМО-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy (eV)	% Composition		
		Os	pap	L
	α-ΜΟ)	I	
LUMO+5	-3.248	25	33	42
LUMO+4	-3.622	7	83	10
LUMO+3	-4.122	2	2	96
LUMO+2	-4.123	3	3	94
LUMO+1	-5.724	25	70	5
LUMO	-6.081	14	84	3
SOMO	-8.597	14	14	72
HOMO-1	-8.706	18	16	65
НОМО-2	-8.981	33	15	52
НОМО-3	-9.178	7	7	86
HOMO-4	-9.252	45	45	11
HOMO-5	-9.286	16	24	61
	β-ΜΟ)	I	
LUMO+5	-3.515	6	9	85
LUMO+4	-4.097	3	95	2
LUMO+3	-4.113	3	95	3
LUMO+2	-5.594	30	63	7
LUMO+1	-6.062	16	81	3
LUMO	-7.355	33	18	49
НОМО	-8.353	26	25	49
HOMO-1	-8.721	42	21	37
HOMO-2	-8.806	30	13	57
НОМО-3	-8.898	18	18	65
HOMO-4	-9.217	13	12	76
HOMO-5	-9.288	16	11	74

Table S14 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 4^+ in S = 1/2 state

МО	Energy (eV)	% Composition		
		Os	pap	L
	α-ΜΟ)		
LUMO+5	2.611	6	92	2
LUMO+4	2.491	2	98	1
LUMO+3	2.287	2	4	94
LUMO+2	2.047	4	95	2
LUMO+1	2.041	4	93	3
LUMO	0.983	41	48	11
SOMO	-0.715	19	78	3
HOMO-1	-1.915	48	37	15
НОМО-2	-2.135	34	33	32
НОМО-3	-2.310	46	26	28
HOMO-4	-2.536	17	13	69
НОМО-5	-2.974	3	16	81
	β-ΜΟ)	I	I
LUMO+5	2.527	2	98	1
LUMO+4	2.289	1	4	94
LUMO+3	2.122	5	92	4
LUMO+2	2.109	3	95	2
LUMO+1	1.081	23	71	6
LUMO	0.822	16	82	2
НОМО	-1.897	50	28	22
HOMO-1	-2.035	53	23	21
НОМО-2	-2.103	48	21	31
НОМО-3	-2.525	16	13	70
HOMO-4	-2.963	3	19	79
HOMO-5	-3.343	3	8	88

Table S15 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 4^{-} in S = 1/2 state

МО	Energy(eV)	% Composition		
		Os	pap	L
LUMO+5	5.472	5	94	1
LUMO+4	5.453	4	92	4
LUMO+3	5.330	4	94	1
LUMO+2	5.244	6	89	6
LUMO+1	4.820	1	3	96
LUMO	4.317	33	61	7
НОМО	2.491	10	88	2
HOMO-1	1.388	57	30	12
НОМО-2	1.204	62	20	18
НОМО-3	0.905	45	38	17
НОМО-4	0.251	5	12	83
НОМО-5	-0.161	2	23	75

Table S16 Calculated (B3LYP/6-31G*/LANL2DZ) MO compositions for $\mathbf{4}^{2-}$ in S = 0 state, ($E_{S=1}-E_{S=0}=2396$ cm⁻¹)

МО	Energy (eV)		% Composition		
		Os	pap	L	
LUMO+5	-6.259	6	82	12	
LUMO+4	-6.615	16	32	53	
LUMO+3	-7.194	21	72	7	
LUMO+2	-7.362	15	47	39	
LUMO+1	-7.578	20	73	7	
LUMO	-7.825	11	75	14	
НОМО	-9.828	39	40	21	
HOMO-1	-10.165	37	31	32	
НОМО-2	-10.536	41	38	20	
НОМО-3	-10.615	49	36	15	
HOMO-4	-10.731	53	36	10	
HOMO-5	-10.942	52	31	18	

Table S17 Calculated (B3LYP/6-31G*/LANL2DZ) MO compositions for $5a^{2+}$ in S=0 state

					2.		
Table S18	Calculated	(uB3LYP/6-31G	*/LANL2DZ) M	O compositions	for $5a^{3+}$	in S	=1/2

МО	Energy (eV)	% Composition		
		Os	pap	L
	α-ΜΟ)	I	
LUMO+5	-8.250	5	70	25
LUMO+4	-9.123	7	12	81
LUMO+3	-9.547	20	73	8
LUMO+2	-9.627	17	73	10
LUMO+1	-9.929	9	88	4
LUMO	-10.022	12	83	4
SOMO	-12.843	41	34	25
HOMO-1	-12.879	34	37	29
НОМО-2	-12.905	32	64	4
НОМО-3	-12.977	21	64	15
HOMO-4	-13.035	23	66	11
НОМО-5	-13.046	21	76	4
	β-ΜΟ)	L	
LUMO+5	-9.066	7	12	81
LUMO+4	-9.470	24	67	9
LUMO+3	-9.569	21	67	12
LUMO+2	-9.895	13	84	3
LUMO+1	-9.947	15	80	4
LUMO	-11.593	40	23	37
НОМО	-12.270	54	28	18
HOMO-1	-12.773	58	32	10
НОМО-2	-12.891	23	72	5
НОМО-3	-12.940	39	54	6
HOMO-4	-12.993	19	76	5
HOMO-5	-13.043	2	98	0

МО	Energy (eV)	% Composition		
		Os	pap	L
	α-ΜΟ)	L	
LUMO+5	-3.151	4	85	11
LUMO+4	-3.223	4	88	7
LUMO+3	-3.961	7	10	83
LUMO+2	-4.541	30	62	8
LUMO+1	-4.629	27	60	12
LUMO	-5.353	14	83	3
SOMO	-5.680	13	83	3
HOMO-1	-7.357	37	21	42
НОМО-2	-7.517	47	30	23
НОМО-3	-7.638	68	25	7
HOMO-4	-7.844	57	32	11
HOMO-5	-8.013	60	33	7
	β-ΜΟ)		
LUMO+5	-3.181	4	85	11
LUMO+4	-3.947	7	13	80
LUMO+3	-4.389	22	71	7
LUMO+2	-4.474	20	68	13
LUMO+1	-4.739	14	82	4
LUMO	-4.763	12	85	3
НОМО	-7.328	39	41	11
HOMO-1	-7.508	52	24	25
НОМО-2	-7.627	67	26	7
НОМО-3	-7.787	59	32	9
HOMO-4	-7.954	59	31	0
HOMO-5	-8.007	64	28	8

Table S19 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for $5a^+$ in S = 1/2

Table S20 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for **5a** in S = 1 state,

МО	Energy (eV)		% Composition		
		Os	pap	L	
	0	ι-MO		I	
LUMO+5	-0.686	4	87	9	
LUMO+4	-0.737	6	74	20	
LUMO+3	-0.837	4	88	8	
LUMO+2	-1.556	11	14	75	
LUMO+1	-2.016	34	52	14	
LUMO	-2.185	32	52	16	
SOM01	-3.738	13	84	3	
SOMO2	-3.743	13	84	3	
НОМО-2	-4.970	44	23	33	
НОМО-3	-5.038	48	36	16	
HOMO-4	-5.125	63	27	10	
HOMO-5	-5.439	55	30	15	
	β	B-MO		I	
LUMO+5	-0.764	4	79	17	
LUMO+4	-1.523	11	28	61	
LUMO+3	-1.774	18	62	19	
LUMO+2	-1.949	17	67	17	
LUMO+1	-2.196	10	86	4	
LUMO	-2.236	13	80	6	
НОМО	-4.918	44	21	35	
HOMO-1	-5.018	54	26	20	
НОМО-2	-5.070	67	25	8	
НОМО-3	-5.286	59	32	8	
HOMO-4	-5.435	63	28	9	
HOMO-5	-5.530	65	25	9	

 $(E_{BS(1,1) S=0} - E_{S=1} = 42.9503 \text{ cm}^{-1})$

МО	Energy (eV)	% Composition		
		Os	pap	L
LUMO+5	-5.913	4	92	4
LUMO+4	-6.301	8	12	79
LUMO+3	-6.913	30	64	6
LUMO+2	-7.004	24	61	16
LUMO+1	-7.597	12	84	4
LUMO	-7.997	3	93	4
НОМО	-9.595	55	23	21
HOMO-1	-10.125	40	25	35
НОМО-2	-10.160	53	33	14
HOMO-3	-10.270	55	25	20
HOMO-4	-10.428	52	25	23
НОМО-5	-10.586	48	46	7

Table S21 Calculated (B3LYP/6-31G*/LANL2DZ) MO compositions for $5b^{2+}$ in S = 0 state

α-ΜΟ					
НОМО	HOMO-1	НОМО-2	НОМО-3		
LUMO	LUMO+1	LUMO+2	LUMO+3		

Table S22 Calculated (uB3LYP/6-31G*/LANL2DZ) M	MO compositions for $5b^{3+}$ in	S = 1/2
--	----------------------------------	---------

МО	Energy (eV)	% Composition		
		Os	pap	L
	α-ΜΟ)	I	
LUMO+5	-8.197	4	52	44
LUMO+4	-9.049	5	8	86
LUMO+3	-9.578	20	75	5
LUMO+2	-9.621	19	72	9
LUMO+1	-9.890	10	87	3
LUMO	-9.943	9	88	3
SOMO1	-12.852	43	35	22
HOMO-1	-12.873	32	30	38
НОМО-2	-12.902	38	54	7
НОМО-3	-12.973	28	68	3
HOMO-4	-13.021	26	59	15
НОМО-5	-13.045	15	79	16
	β-ΜΟ)	1	I
LUMO+5	-8.999	6	8	86
LUMO+4	-9.496	24	70	6
LUMO+3	-9.554	22	68	10
LUMO+2	-9.867	13	84	3
LUMO+1	-9.895	14	83	3
LUMO	-11.590	46	22	32
НОМО	-12.222	58	27	15
HOMO-1	-12.720	49	30	21
НОМО-2	-12.814	55	35	10
НОМО-3	-12.913	26	67	7
HOMO-4	-12.964	23	74	3
НОМО-5	-13.040	2	96	2

МО	Energy (eV)	% Composition			
		Os	pap	L	
α-ΜΟ					
LUMO+5	-3.206	3	89	7	
LUMO+4	-3.275	3	89	8	
LUMO+3	-3.949	6	8	86	
LUMO+2	-4.542	30	62	8	
LUMO+1	-4.634	29	61	10	
LUMO	-5.339	14	84	3	
SOMO	-5.661	13	84	3	
HOMO-1	-7.400	41	21	38	
НОМО-2	-7.526	46	30	24	
НОМО-3	-7.595	61	28	11	
HOMO-4	-7.612	68	24	9	
HOMO-5	-7.964	58	36	7	
	<i>β</i> -MC)			
LUMO+5	-3.236	3	87	10	
LUMO+4	-3.941	6	11	83	
LUMO+3	-4.372	21	71	8	
LUMO+2	-4.480	21	70	9	
LUMO+1	-4.675	12	84	4	
LUMO	-4.779	12	85	3	
НОМО	-7.380	45	19	36	
HOMO-1	-7.537	50	23	27	
НОМО-2	-7.594	68	25	7	
НОМО-3	-7.610	61	26	12	
HOMO-4	-7.901	59	32	9	
HOMO-5	-8.030	63	27	10	

Table S23 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for $5b^+$ in S=1/2

Table S24 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 5b in S=1 state,

МО	Energy (eV)	% Composition		
		Os	pap	L
	α-ΜΟ)		
LUMO+5	-0.733	4	83	13
LUMO+4	-0.798	3	92	5
LUMO+3	-0.841	4	81	15
LUMO+2	-1.555	9	11	80
LUMO+1	-2.026	36	55	9
LUMO	-2.138	32	51	17
SOMO1	-3.744	12	85	2
SOMO2	-3.796	13	85	3
НОМО-2	-4.994	64	19	16
НОМО-3	-5.043	40	34	26
HOMO-4	-5.125	44	35	21
HOMO-5	-5.152	69	23	8
	β-ΜΟ)	I	I
LUMO+5	-0.769	5	67	28
LUMO+4	-1.536	9	21	70
LUMO+3	-1.767	21	72	7
LUMO+2	-1.877	17	61	22
LUMO+1	-2.212	10	87	3
LUMO	-2.256	10	85	7
НОМО	-4.984	56	19	25
HOMO-1	-5.027	55	26	19
НОМО-2	-5.074	60	22	19
НОМО-3	-5.129	63	28	9
HOMO-4	-5.459	61	26	13
HOMO-5	-5.504	65	28	7

 $(E_{BS(1,1) S=0} - E_{S=1} = 24.5998 \text{ cm}^{-1})$

МО	Energy (eV)	% Composition		
		Os	pap	L′
LUMO+5	-0.128	4	95	2
LUMO+4	-0.194	2	96	1
LUMO+3	-0.879	5	93	2
LUMO+2	-0.995	4	94	2
LUMO+1	-2.250	32	59	9
LUMO	-2.891	18	76	6
НОМО	-4.683	8	9	83
HOMO-1	-5.157	15	14	71
HOMO-2	-5.260	26	42	32
НОМО-3	-5.388	34	25	41
HOMO-4	-5.507	43	12	46
HOMO-5	-5.764	39	12	48

-

п

Table S25 Calculated (B3LYP/6-31G*/LANL2DZ) MO compositions for **6** in S = 0 state

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy (eV)	% Composition		
		Os	pap	L'
	α-ΜΟ)		
LUMO+5	-2.906	15	35	50
LUMO+4	-3.432	9	9	82
LUMO+3	-3.759	4	93	2
LUMO+2	-3.832	4	95	1
LUMO+1	-5.364	27	67	6
LUMO	-5.834	13	83	4
SOMO	-8.508	36	36	28
HOMO-1	-8.569	14	10	76
НОМО-2	-8.602	50	27	23
НОМО-3	-8.926	4	12	84
HOMO-4	-9.044	54	14	31
HOMO-5	-9.239	22	34	44
	β-ΜΟ)	I	
LUMO+5	-3.267	8	9	83
LUMO+4	-3.755	4	94	2
LUMO+3	-3.826	4	95	1
LUMO+2	-5.308	30	64	7
LUMO+1	-5.834	15	80	5
LUMO	-7.138	25	10	65
НОМО	-8.344	44	30	25
HOMO-1	-8.372	36	19	45
HOMO-2	-8.529	49	24	27
НОМО-3	-8.608	24	23	53
HOMO-4	-9.145	5	8	87
HOMO-5	-9.272	3	88	10

Table S26 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 6^+ in S=1/2 state

МО	Energy (eV)	% Composition			
		Os	pap	L′	
α-ΜΟ					
LUMO+5	2.717	4	8	89	
LUMO+4	2.658	3	96	1	
LUMO+3	2.610	1	98	1	
LUMO+2	2.254	5	94	2	
LUMO+1	2.176	5	93	1	
LUMO	1.032	40	49	11	
SOMO	-0.674	18	77	5	
HOMO-1	-1.868	49	20	31	
НОМО-2	-2.024	21	48	31	
НОМО-3	-2.151	44	25	31	
HOMO-4	-2.348	36	14	50	
НОМО-5	-2.591	5	15	80	
	β-Μ	C	1	1	
LUMO+5	2.690	3	96	1	
LUMO+4	2.641	2	98	1	
LUMO+3	2.340	6	92	2	
LUMO+2	2.241	5	93	1	
LUMO+1	1.120	24	70	6	
LUMO	0.884	17	78	6	
НОМО	-1.821	48	28	24	
HOMO-1	-1.828	47	28	25	
НОМО-2	-1.931	39	22	39	
НОМО-3	-2.336	36	13	51	
HOMO-4	-2.585	4	15	81	
HOMO-5	-3.186	2	3	95	

Table S27 Calculated (uB3LYP/6-31G*/LANL2DZ) MO compositions for 6^{-} in S = 1/2

МО	Energy (eV)	% Composition		
		Os	pap	L'
LUMO+5	5.545	3	96	1
LUMO+4	5.516	2	96	2
LUMO+3	5.424	6	92	2
LUMO+2	5.364	7	91	1
LUMO+1	5.263	2	4	94
LUMO	4.231	33	60	7
НОМО	2.708	15	80	5
HOMO-1	1.423	57	31	12
НОМО-2	1.221	54	26	20
НОМО-3	1.087	42	37	21
HOMO-4	0.495	10	10	79
HOMO-5	0.180	2	18	79

Table S28 Calculated (B3LYP/6-31G*/LANL2DZ) MO compositions for 6^{2-} in S = 0 state,

α-ΜΟ					
SOMO	HOMO-1	НОМО-2	НОМО-3		
LUMO	LUMO+1	LUMO+2	LUMO+3		

 $(E_{S=1}-E_{S=0}=1505 \text{ cm}^{-1})$

Table S29 DFT calculated selected MO compositions for 2^n , 3^n , 4^n , $5a^n$, $5b^n$ and 6^n by multiple methods and basis set

			TZVP+LANL2DZ			6-31G*
Complay	МО	Encomente		0/ 4	+LANL2DZ	
Complex	MO	Fragments		%	1	
			M06L	τ-HCTH	PBE	B3LYP
2 ⁺ (<i>S</i> =0)	НОМО	Os/pap/HL	0/19/81	0/22/77	0/23/76	1/4/96
-21-17-110	LUMO	Os/pap/HL	7/89/4	8/89/3	8/89/3	12/84/4
2^{2+} (S=1/2)	β-LUMO	Os/pap/HL	16/15/69	9/11/79	11/13/76	1/2/97
2 (S=1/2)	SOMO	Os/pap/HL	7/89/4	7/89/4	7/89/4	12/84/4
	β-LUMO	Os/pap/HL	5/89/5	6/89/5	6/89/5	28/67/4
2 (S=0)	НОМО	Os/pap/HL	4/89/7	5/88/6	5/88/7	8/88/4
a ⁺ (a b)	1101/0		00/01/40	07/04/00	00/00/00	00/01/50
$3^{\circ}(S=0)$	HOMO	Os/pap/HL	29/31/40	27/34/39	29/32/38	22/21/58
2^{2+} (S-1/2)		Os/pap/HL	11/81/8	12/78/11	12/78/10	14/82/3
3 (3=1/2)	p-LUMO	Us/pap/HL	30/29/41	51/29/40	33/30/37	32/22/40
3 (S=1/2)	SOMO	Os/pap/HL	8/83/9	8/81/11	11/77/12	14/83/3
	β-LUMO	Os/pap/HL	5/86/8	5/83/11	10/75/15	12/78/10
$3^{-}(S=0)$	HOMO	Os/pap/HL	3/90/7	3/89/8	3/89/8	8/88/4
		L.	1	1		
4 (<i>S</i> =0)	HOMO	Os/pap/L	26/20/54	26/22/52	33/27/40	9/13/78
	LUMO	Os/pap/L	15/79/6	15/78/7	14/78/7	13/85/2
4 ⁺ (<i>S</i> =1/2)	SOMO	Os/pap/L	14/23/63	14/25/61	17/22/62	14/14/72
	β-LUMO	Os/pap/L	33/23/44	29/26/46	24/35/41	33/18/49
$4^{-}(S=1/2)$	SOMO	Os/pap/L	15/79/6	14/78/8	13/79/7	19/78/3
	β-LUMO	Os/pap/L	13/81/6	13/79/8	13/79/8	16/82/2
4 ²⁻ (<i>S</i> =0)	НОМО	Os/pap/L	23/70/7	25/66/9	24/68/8	10/88/2
$5a^{2+}(S=0)$	НОМО	Os/pap/L	38/25/37	36/27/37	38/27/35	39/40/21
	LUMO	Os/pap/L	11/84/5	11/83/5	11/82/7	11/75/14
$5a^{3+}(S=1/2)$	β -ΗΟΜΟ	Os/pap/L	55/26/18	52/30/18	52/30/18	54/28/11
	β-LUMO	Os/pap/L	37/26/38	35/27/38	35/26/38	40/23/37
$5a^{+}(S=1/2)$	SOMO	Os/pap/L	8/83/9	11/80/8	10/82/8	13/83/3
	α -LUMO	Os/pap/L	11/79/11	12/80/8	10/82/8	14/83/3
5a (S=1)	SOMO1	Os/pap/L	12/82/6	10/85/4	10/85/5	13/84/3
	β-LUMO	Os/pap/L	7/83/10	7/79/13	8/79/13	13/80/6
$5b^{2+}(S=0)$	HOMO	Os/pap/L	31/30/39	31/30/39	32/31/37	55/23/21

	LUMO	Os/pap/L	13/81/6	11/84/4	12/83/5	3/93/4
$5b^{3+}(S=1/2)$	β–ΗΟΜΟ	Os/pap/L	52/33/15	51/33/16	50/33/17	58/27/15
	β-LUMO	Os/pap/L	30/32/39	31/34/35	31/33/36	46/22/32
$5b^+(S=1/2)$	SOMO	Os/pap/L	9/87/4	11/82/7	10/83/7	13/84/3
	α -LUMO	Os/pap/L	8/80/12	9/78/13	8/79/13	14/84/3
5b (<i>S</i> =1)	SOMO1	Os/pap/L	11/82/7	10/79/11	9/80/11	12/85/2
	β-LUMO	Os/pap/L	5/88/7	5/83/12	5/83/12	10/85/7
6 (<i>S</i> =0)	HOMO	Os/pap/ L	24/21/55	19/21/60	23/22/55	8/9/83
	LUMO	Os/pap/ L'	15/72/12	13/75/12	13/74/13	18/76/6
6 ⁺ (<i>S</i> =1/2)	SOMO	Os/pap/ L	21/17/61	17/18/65	18/19/63	36/36/28
	β-LUMO	Os/pap/ L'	20/21/59	16/20/64	18/21/61	25/10/65
6 ⁻ (<i>S</i> =1/2)	SOMO	Os/pap/ L	15/73/11	14/73/13	13/74/13	18/77/5
	β-LUMO	Os/pap/ L'	14/72/13	13/73/14	14/72/14	17/78/6
$6^{2^{-}}(S=0)$	HOMO	Os/pap/ L	17/71/12	17/67/15	17/68/15	15/80/5

Table S30 DFT Calculated energies (in kJ/Mole) of geometry optimized structures of 1^n , 2^n ,

Complex		TZVP+LANL2DZ	ZVP+LANL2DZ		
	M06L	τ-ΗСΤΗ	PBE	B3LYP	
2 ²⁺ (<i>S</i> =1/2)	-5024920.0783	-5024733.3411	-5019882.8715	-5023908.7813	
2 ⁺ (<i>S</i> =0)	-5025790.4350	-5025621.2493	-5020763.4543	-5024761.8879	
2 (S=1/2)	-5026304.1364	-5026148.4293	-5021281.2329	-5025256.2300	
2 ⁻ (<i>S</i> =1)	-5026482.7563	-5026348.2109	-5021475.3931	-5025427.3574	
2 ⁻ (<i>S</i> =0)	-5026515.3828	-5026376.8355	-5021506.4221	-5025435.2521	
$\Delta E =$	33.0717	28.6246	31.0280	7.8947	
$2^{-}(S=1)-2^{-}(S=0)$	$(2764.5776 \text{ cm}^{-1})$	$(2392.8292 \text{ cm}^{-1})$	(2593.7377 cm ⁻¹)	$(659.9452 \text{ cm}^{-1})$	
3 ²⁺ (<i>S</i> =1/2)	-5024926.3760	-5024735.9160	-5019882.6006	-5023919.0451	
3 ⁺ (<i>S</i> =0)	-5025790.2517	-5025609.9941	-5020748.9400	-5025375.1706	
3 (S=1/2)	-5026275.4302	-5026108.6178	-5021238.1463	-5025237.6393	
3 ⁻ (<i>S</i> =1)	-5026433.4993	-5026285.4841	-5021409.6214	-5025375.1706	
3 ⁻ (<i>S</i> =0)	-5026460.9058	-5026310.1535	-5021436.2393	-5025388.8193	
$\Delta E =$	27.4065	24.6694	26.6179	13.6487	
3 ⁻ (S=1)-3 ⁻ (S=0)	$(2291.0040 \text{ cm}^{-1})$	$(2062.2004 \text{ cm}^{-1})$	$(2225.0822 \text{ cm}^{-1})$	$(1140.942 \text{ cm}^{-1})$	
4 ⁺ (<i>S</i> =1/2)	-5024027.1913	-5023833.0805	-5018970.0214	-5023011.3714	
4 (<i>S</i> =0)	-5024617.9987	-5024422.4307	-5019571.9362	-5023581.5751	
4 ⁻ (<i>S</i> =1/2)	-5024832.8074	-5024653.8780	-5019792.8930	-5023785.6739	
$4^{2-}(S=1)$	-5024727.8452	-5024562.1716	-5019695.3699	-5023652.4474	
4 ²⁻ (<i>S</i> =0)	-5024746.2772	-5024585.1807	-5019718.8376	-5023681.1121	
$\Delta E =$	18.4320	23.0091	23.4677	28.6647	
$4^{2-}(S=1)-4^{2-}(S=0)$	(1540.7945 cm ⁻¹)	$(1923.4101 \text{ cm}^{-1})$	(1961.7461 cm ⁻¹)	(2396.1813cm ⁻¹)	
$5a^{3+}(S=1/2)$	-8354396.4251	-8354325.0619	-8346032.8826	-8352723.9688	

$\mathbf{3}^{n}$, $\mathbf{4}^{n}$, $\mathbf{5a}^{n}$ and $\mathbf{5b}^{n}$ by multiple methods and basis set

$5a^{2+}(S=0)$	-8355424.1514	-8355341.8220	-8347045.7450	-8353733.2392
5a ⁺ (<i>S</i> =1/2)	-8356105.9210	-8356029.3253	-8347725.6647	-8354375.8217
5a (<i>S</i> =1)	-8356563.8067	-8356496.0074	-8348183.1922	-8354831.9948
5a (<i>S</i> =0)	-8356467.6554	-8356478.9847	-8348169.9148	-8354773.8680
5a (BS(1,1) <i>S</i> =0)		_	_	-8354831.4810
$\Delta E =$				0.5138
5a BS(1,1) - 5a(S=1)				$(42.9503 \text{ cm}^{-1})$
5b ³⁺ ($S=1/2$)	-8354392.9802	-8354324.9926	-8346031.9782	-8352724.8993
5b ²⁺ (<i>S</i> =0)	-8355417.9725	-8355350.2982	-8347054.4191	-8353722.9793
5b ⁺ (<i>S</i> =1/2)	-8356082.6305	-8356019.2617	- 8347710.7083	-8354364.6626
5b (<i>S</i> =1)	-8356550.6472	-8356489.8375	-8348172.2662	-8354824.2955
5b (<i>S</i> =0)	-8356526.7651	-8356472.7525	-8348158.0796	-8354764.3417
5b (BS(1,1) <i>S</i> =0)	—	-8356489.8443	-8348172.2757	-8354824.0017
$\Delta E =$		-0.0098	-0.0095	0.2938
5b BS(1,1) – 5b(S=1)		$(-0.8192 \text{ cm}^{-1})$	$(-0.7941 \text{ cm}^{-1})$	(24.5998 cm ⁻¹)
6 ⁺ (<i>S</i> =1/2)	-4939826.3513	-4939672.3200	-4934800.0286	-4938832.3965
6 (<i>S</i> =0)	-4940389.8052	-4940240.0177	-4935365.1321	-4939378.2207
6 ⁻ (<i>S</i> =1/2)	-4940595.4039	-4940442.0061	-4935575.0676	-4939569.3224
6 ²⁻ (<i>S</i> =1)	-4940475.2505	-4940353.5136	-4935459.9974	-4939420.3287
6 ²⁻ (S=0)	-4940493.2677	-4940375.6130	-4935482.6930	-4939438.3336
$\Delta E =$	18.0171	22.0994	22.6956	18.0049
6 ²⁻ (S=1)-6 ²⁻ (S=0)	(1506.1116 cm ⁻¹)	(1839.8418 cm ⁻¹)	(1897.2036 cm ⁻¹)	$(1505.0918 \text{ cm}^{-1})$

	TZVP+LANL2DZ						6-31G*+LANL2DZ					
Complex	M06L			τ-HCTH		PBE		B3LYP				
complex	Os	HL/L/L	pap	Os	HL/L/L	pap	Os	HL/L/L	pap	Os	HL/L/L	pap
2^{2+} (S=1/2)	0.104	0.901	-0.004	0.116	0.885	-0.009	0.156	0.844	-0.001	-0.014	1.018	-0.001
2 (S=1/2)	-0.064	-0.019	1.045	-0.016	0.018	0.997	-0.001	0.020	0.980	-0.174	0.014	1.163
3^{2+} (S=1/2)	0.546	0.467	-0.014	0.503	0.524	-0.029	0.485	0.505	0.013	0.566	0.462	-0.024
3 (S=1/2)	-0.040	-0.003	1.086	0.020	-0.003	0.984	0.033	-0.002	0.970	-0.194	-0.008	1.183
4 ⁺ (<i>S</i> =1/2)	0.322	0.736	-0.062	0.320	0.750	-0.068	0.408	0.450	0.196	0.251	0.841	-0.064
4 ⁻ (<i>S</i> =1/2)	0.075	-0.014	0.940	0.101	-0.014	0.914	0.131	-0.006	0.874	-0.173	-0.036	1.206
5a ³⁺ ($S=1/2$)	0.668	0.371	-0.047	0.624	0.423	-0.048	0.596	0.409	-0.006	0.587	0.467	-0.063
5a ⁺ (<i>S</i> =1/2)	0.037	0.009	0.955	0.059	0.007	0.902	0.097	0.015	0.882	-0.139	-0.001	1.179
5a (S=1)	0.096	0.004	1.877	0.147	0.004	1.839	0.199	-0.004	1.792	-0.281	-0.021	2.365
5b ³⁺ ($S=1/2$)	0.667	0.359	-0.019	0.634	0.394	-0.033	0.615	0.373	0.014	0.618	0.421	-0.040
5b ⁺ (<i>S</i> =1/2)	-0.006	-0.004	1.002	0.046	0.001	0.955	0.068	0.006	0.928	-0.180	-0.014	1.203
5b (<i>S</i> =1)	-0.036	-0.003	2.005	0.062	-0.010	1.965	0.114	0.001	1.88	-0.352	0.030	2.378
6 ⁺ (<i>S</i> =1/2)	0.299	0.769	-0.069	0.313	0.785	-0.099	0.316	0.715	-0.068	0.218	0.822	-0.036
6 ⁻ (<i>S</i> =1/2)	0.182	-0.016	0.834	0.193	-0.014	0.824	0.222	-0.007	0.782	-0.059	-0.031	1.088

Table S31 DFT calculated Mulliken spin distributions for 2^n , 3^n , 4^n , $5a^n$, $5b^n$ and 6^n by multiple methods and basis set

Table S32 DFT Calculated single point energies (in kJ/Mole) of 2^n , 3^n , 4^n , 6^n by multiple

Complex		TZVP+LANL2DZ		6-31G*+LANL2DZ
	M06L	τ-ΗСΤΗ	PBE	B3LYP
2 ⁻ (BS(1,1), S=0)	-5026479.9994	-5026353.6491	-5021478.6637	-5025426.9353
2 ⁻ (<i>S</i> =1)	-5026480.0867	-5026348.3136	-5021475.1999	-5025427.0881
2 ⁻ (<i>S</i> =0)	-5026513.0814	-5026376.4682	-5021505.8830	-5025434.8858
3 ⁻ (BS(1,1), S=0)	-5026434.7952	-5026284.8621	-5021409.8869	-5025359.2835
3 ⁻ (<i>S</i> =1)	-5026432.9676	-5026285.3565	-5021409.1796	-5025374.7676
3 ⁻ (<i>S</i> =0)	-5026459.0509	-5026311.4269	-5021436.1382	-5025388.8705
$4^{2^{-}}$ (BS(1,1), S=0)				-5023651.2732
$4^{2^{-}}(S=1)$				-5023652.2531
$4^{2^{-}}$ (S=0)				-5023681.6505
6 ²⁻ (BS(1,1), S=0)				-4939418.7085
6 ²⁻ (<i>S</i> =1)		—	—	-4939420.3783
6 ²⁻ (<i>S</i> =0)			_	-4939437.9022

methods and basis set (ground sate are highlighted in bold)

Bond	DFT						
length (Å)	2 ²⁺	2 ⁺	2	2-			
	S=1/2	<i>S</i> =0	S=1/2	<i>S</i> =0			
Os1-N1	2.106	2.105	2.118	2.136			
Os1- N2	2.105	2.101	2.118	2.133			
Os1-N3	2.095	2.081	2.083	2.073			
Os1-N5	2.074	2.053	2.042	2.022			
Os1-N6	2.080	2.059	2.038	2.020			
Os1-N8	2.096	2.082	2.082	2.073			
C4-O1	1.260	1.306	1.286	1.294			
C7-O2	1.304	1.278	1.309	1.315			
C5-C6	1.453	1.475	1.477	1.478			
N4-N5	1.287	1.293	1.328	1.365			
N6-N7	1.287	1.293	1.327	1.364			
01-H1	1.030	1.090	1.105	1.114			
O2 H1	1.433	1.319	1.293	1.280			
0102	2.449	2.403	2.393	2.390			

Table S33 Selected DFT calculated ((u)B3LYP/6-31G*/LANL2DZ) bond lengths for 2^n
Bond	DFT			
length (Å)	3 ²⁺	3 ⁺	3	3-
	S=1/2	<i>S</i> =0	S=1/2	<i>S</i> =0
Os1-N1	2.162	2.173	2.192	2.213
Os1-O2	1.972	2.041	2.081	2.124
Os1-N3	2.089	2.080	2.092	2.091
Os1-N5	2.088	2.025	1.998	1.979
Os1-N6	2.086	2.035	2.021	1.992
Os1-N8	2.099	2.071	2.075	2.070
C4-O1	1.317	1.329	1.336	1.343
C10-O2	1.320	1.319	1.308	1.295
C5-C6	1.477	1.482	1.482	1.482
N4-N5	1.280	1.295	1.327	1.364
N6-N7	1.286	1.301	1.341	1.381
O1-H1	1.017	1.015	1.014	1.016
N2H1	1.581	1.594	1.598	1.588
O1 N2	2.499	2.517	2.524	2.521

Table S34 Selected DFT calculated ((u)B3LYP/6-31G*/LANL2DZ) bond lengths for 3^n

Bond	DFT			
length (Å)	4+	4	4	4 ²⁻
	S=1/2	<i>S</i> =0	S=1/2	<i>S</i> =0
Os1-N1	2.071	2.059	2.071	2.076
Os1-N3	2.020	2.011	2.000	1.976
Os1-N6	2.071	2.059	2.071	2.076
Os1-N8	2.020	2.011	2.000	1.976
Os1-O1	2.044	2.048	2.092	2.142
Os1-O2	2.044	2.048	2.092	2.142
C15-O1	1.312	1.346	1.331	1.316
C20-O2	1.312	1.346	1.331	1.316
C21-C16	1.478	1.496	1.495	1.494
N2-N3	1.298	1.312	1.347	1.389
N7-N8	1.298	1.312	1.347	1.389

Table S35Selected DFT calculated ((u)B3LYP/6-31G*/LANL2DZ) bond lengths for 4^n

Bond	DFT			
length (Å)	6+	6	6	6 ²⁻
	<i>S</i> =1/2	<i>S</i> =0	S=1/2	<i>S</i> =0
Os1-N1	2.064	2.045	2.063	2.079
Os1-N3	2.025	2.007	1.993	1.976
Os1-N4	1.999	2.009	1.997	1.978
Os1-N6	2.060	2.044	2.063	2.081
Os1-O1	2.040	2.043	2.082	2.128
Os1-O2	2.051	2.040	2.077	2.123
C1-O1	1.332	1.349	1.334	1.319
C12-O2	1.301	1.349	1.335	1.319
C6-C7	1.470	1.486	1.486	1.485
N2-N3	1.299	1.316	1.355	1.400
N4-N5	1.304	1.315	1.355	1.400

Table S36Selected DFT calculated ((u)B3LYP/6-31G*/LANL2DZ) bond Lengths for 6^n

Bond	DFT			
length (Å)	5 a ³⁺	5 a ²⁺	5 a ⁺	5a
	S=1/2	<i>S</i> =0	S=1/2	<i>S</i> =1
Os1-N1	2.081	2.076	2.066	2.071
Os1-N3	2.050	2.025	2.016	2.011
Os1-N4	2.057	2.034	2.009	1.988
Os1-N6	2.088	2.067	2.092	2.098
Os1-N7	2.193	2.195	2.193	2.205
Os1-O2	2.021	2.058	2.076	2.086
Os2-N8	2.085	2.092	2.082	2.094
Os2-N10	2.049	2.024	1.998	1.987
Os2-N11	2.054	2.004	2.003	1.992
Os2-N13	2.096	2.070	2.095	2.099
Os2-N14	2.188	2.185	2.193	2.209
Os2-O1	1.999	2.054	2.067	2.079
C26-O1	1.304	1.310	1.309	1.307
C53-O2	1.297	1.315	1.313	1.312
C27-C54	1.478	1.487	1.485	1.484
N2-N3	1.298	1.294	1.324	1.349
N4-N5	1.286	1.304	1.311	1.329
N9-N10	1.296	1.291	1.311	1.347
N11-N12	1.285	1.311	1.329	1.337
Os1Os2	6.601	6.422	6.358	6.362

Table S38 Selected DFT	calculated ((u)B3LYP/6-31G*/LAN	NL2DZ) bond lengths for $\mathbf{5b}^n$
------------------------	---------------------------------	---

Bond	DFT			
length (Å)	$5b^{3+}$ $5b^{2+}$ $5b^+$ $5b^+$			
	50 C 1/2	50	50 C 1/2	5D C 1
	S=1/2	3=0	S=1/2	3=1
Os1-N1	2.099	2.069	2.081	2.088
Os1-N3	2.046	2.015	2.008	1.990
Os1-N4	2.037	2.026	2.0191	2.011
Os1-N6	2.083	2.099	2.069	2.073
Os1-N7	2.190	2.180	2.205	2.217
Os1-O2	2.032	2.051	2.071	2.080
Os2-N8	2.099	2.093	2.075	2.076
Os2-N10	2.079	2.021	2.031	2.017
Os2-N11	2.078	2.004	2.010	1.996
Os2-N13	2.094	2.071	2.078	2.084
Os2-N14	2.169	2.188	2.203	2.213
Os2-O1	1.983	2.054	2.061	2.078
C26-O1	1.310	1.309	1.317	1.315
C53-O2	1.295	1.308	1.314	1.314
C27-C54	1.482	1.488	1.487	1.486
N2-N3	1.285	1.313	1.314	1.331
N4-N5	1.303	1.290	1.325	1.348
N9-N10	1.288	1.291	1.317	1.341
N11-N12	1.280	1.309	1.310	1.329
Os1Os2	6.616	6.433	6.448	6.445