Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Aryl(silyl)amino group stabilized hydridosilanediols: synthesis and characterization and the use for preparation of alumino(hydrido)siloxanes

Xiaoping Wang,^a Jiancheng Li,^a Shimin Chen,^a Weiping Liu,^b Qingsong Ye,^b and Hongping Zhu^{a*}

^a State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

^b State Key Laboratory for Platinum Group Metals, Kunming Institute of Precious Metals, Kunming, Yunnan Province 650106, China.

Content:

- I. X-ray crystallographic data of 6 and 8–11 and crystal structures of 6 and 11
- II. Table of selected bond lengths and angles of 8–11
- III. The ¹H, ¹³C, and ²⁹SiNMR spectra of 1–11

I. X-ray crystallographic data of **6** and **8–11** and crystal structures of **6** and **11**

	6	8	9
Empirical formula	$C_{17}H_{25}NO_2Si_2$	$C_{40}H_{76}Al_2N_2O_6Si_4$	$C_{56}H_{92}Al_2N_2O_6Si_4$
formula weight	331.56	847.35	1055.64
crystal system	Triclinic	Triclinic	Monoclinic
space group	<i>P</i> -1	<i>P</i> -1	Сс
CCDC	1442616	1442617	1442618
a/Å	10.4955(7)	10.0975(9)	27.6137(17)
$b/\text{\AA}$	12.9201(11)	10.2652(7)	9.4580(7)
c/Å	16.0791(11)	14.3031(10)	23.5911(17)
a/deg	109.295(7)	73.704(6)	
β /deg	106.762(6)	70.848(7)	98.582(7)
γ/deg	97.856(6)	63.167(8)	
$V/\text{\AA}^3$	1904.4(2)	1234.17(16)	6092.3(7)
Ζ	4	1	4
$ ho_{ m calcd}/ m g\cdot m cm^{-3}$	1.156	1.140	1.151
μ/mm^{-1}	0.192	1.794	0.173
<i>F</i> (000)	712	460	2288
crystal size/mm ³	0.40 x 0.30 x 0.20	0.40 x 0.40 x 0.40	0.30 x 0.20 x 0.10
θ range/deg	3.04-26.00	3.31-62.13	2.94-26.00
index ranges	$-12 \le h \le 12$	$-11 \le h \le 11$	$-34 \le h \le 18$
	$-8 \le k \le 15$	$-11 \le k \le 11$	$-11 \le k \le 11$
	$-19 \le l \le 19$	$-13 \le l \le 16$	$-29 \le l \le 29$
collected data	11293	7741	12847
unique data	7416	3864	7358
	$(R_{\rm int} = 0.0250)$	$(R_{\rm int} = 0.0247)$	$(R_{\rm int} = 0.0632)$
completeness to θ	99.3%	99.2%	99.9%
data/restraints/parameters	7416/0/446	3864/0/256	7358/242/604
GOF on F^2	1.024	1.045	1.019
$f_{n-1} D$ in diagonal $[I > 2 $ (D)	$R_1 = 0.0512$	$R_1 = 0.0373$	$R_1 = 0.0873$
$\lim_{t \to \infty} R \lim_{t \to \infty} C(t) \leq C(t)$	$wR_2 = 0.1120$	$wR_2 = 0.0948$	$wR_2 = 0.1988$
R indices (all data)	$R_1 = 0.0716$	$R_1 = 0.0439$	$R_1 = 0.1296$
	$wR_2 = 0.1214$	$wR_2 = 0.1008$	$wR_2 = 0.2265$
Largest diff	0.257/ 0.207	0 474/ 0 277	0 (52 0 204
$p_{ab}/h_{ab} (a Å^{-3})$	0.33//-0.28/	0.4/4/-0.2//	0.033/-0.394

Table S1 Crystal data and refinements for compounds 6 and 8-11

 $\sum_{\alpha \in \mathbb{C}^{3}} \frac{1}{2} \exp(-\frac{1}{2} \exp(-\frac{1$

	10	11
Empirical formula	$C_{68}H_{103}Al_2N_3O_8Si_6$	$C_{46.70}H_{77.30}Al_2N_{3.30}O_{4.70}Si_4$
formula weight	1313.03	926.54
crystal system	Monoclinic	Monoclinic
space group	P2(1)/n	P2(1)/c
CCDC	1442619	1442615
a/Å	12.6280(9)	15.2140(5)
b/Å	25.7705(17)	10.4426(3)
c/Å	23.4218(12)	17.3308(5)
α/deg		
β/deg	101.117(6)	103.941(3)
γ/deg		
$V/\text{\AA}^3$	7479.1(8)	2672.30(14)
Ζ	4	2
$ ho_{ m calcd}/ m g\cdot m cm^{-3}$	1.166	1.151
μ/mm^{-1}	0.186	1.689
<i>F</i> (000)	2824	1000
crystal size/mm ³	0.40 x 0.40 x 0.40	0.40 x 0.20 x 0.20
θ range/deg	2.89-26.00	4.98-62.11
index ranges	$-15 \le h \le 15$	$-15 \le h \le 17,$
	$-31 \le k \le 31$	$-11 \le k \le 11,$
	$-28 \le l \le 28$	$-17 \le l \le 19$
collected data	40158	16109
unique data	14677	4179
	$(R_{\rm int} = 0.0838)$	$(R_{\rm int} = 0.0321)$
completeness to θ	99.7%	99.5%
data/restraints/parameters	14677/600/906	4179/112/334
GOF on F^2	1.044	1.044
final D indians $[I > 2]$ (D)	$R_1 = 0.0879$	$R_1 = 0.0364$
$\lim_{t \to \infty} R \lim_{t \to \infty} ces \left[I > 2 (I) \right]$	$wR_2 = 0.2013$	$wR_2 = 0.0990$
R indices (all data)	$R_1 = 0.1164$	$R_1 = 0.0420$
	$wR_2 = 0.2180$	$wR_2 = 0.1040$
Largest diff	1 084/ 0 499	0 379/ 0 30/
peak/hole (e·Å ⁻³)	1.004/-0.400	0.579/-0.504

^{*a*} The data were collected at 173(2) K by using Mo K_a ($\lambda = 0.71073$ Å) radiation for compound **10** and Cu K_a ($\lambda = 1.54178$ Å) radiation for compound **11**. $R_1 = \sum(||F_o| - |F_c||)/\sum|F_o|$, $wR_2 = [\sum w(F_o^2 - F_c^2)^2/\sum w(F_o^2)]^{1/2}$, GOF = $[\sum w(F_o^2 - F_c^2)^2/(N_o - N_p)]^{1/2}$.

Figure S1 X-ray crystal structure of another independent molecule of **6** with thermal ellipsoids at 50% probability level. H atoms except for those of SiH and OH are omitted for clarity.

Figure S2 X-ray crystal structure of **6** with intermolecular SiO–H···O(H)Si hydrogen bonding network (the separations of SiO–H···O(H)Si, 1.8519(2), 1.9688(1), and 2.0097(1) Å). H atoms except for those of SiH and OH are omitted for clarity.

Figure S3 X-ray crystal structure of **11** with NMe₃ bonded at the Al atom in thermal ellipsoids at 50% probability level. H atoms except for those of SiH and AlH are omitted for clarity. Selected bond lengths (Å): Al–N_{NMe3} 2.038(5). Symmetry code for A: -x, -y+2, -z.

II. Table of selected bond lengths and angles of 8–11

Compound	8	9	10	11
Si-H (Å)	1.44(2)	1.44(3)-1.45(3)	1.35(4)-1.42(4)	1.39(2)
Si–O (Å)	1.597(1)-1.598(2)	1.572(7)-1.631(8)	1.599(3)-1.618(3)	1.601(2)-1.606(1)
Al–O (Å)	1.712(1)-1.714(2)	1.668(8)-1.769(8)	1.707(3)-1.718(3)	1.709(1)-1.714(1)
O–Si–O (°)	113.3(8)	112.1(4)–113.2(4)	111.9(1)-113.8(1)	112.6(8)
0–Al–O (°)	115.7(5)	114.6(4)–114.8(4)	112.0(1)-115.4(1)	115.4(7)
Si–O–Al (°)	149.3(1)-151.0(1)	145.9(5)-158.3(5)	128.9(2)-145.3(2)	145.7(1)-147.7(1)

Table S2 Important bond lengths (Å	(and angles ((\circ)) of 8–11
-----------------------------------	---	---------------	-----------	------------------

III. The ¹H, ¹³C, and ²⁹Si NMR Spectra of **1–11**

 $R = N(SiMe_2Ph)-2,6-iPr_2C_6H_3$ (1)

-1.6

 $R = N(SiMe_2Ph) - 2, 4, 6 - Me_3C_6H_2$ (3)

$$\begin{array}{c} -147.8 \\ -147.8 \\ 137.8 \\ 137.8 \\ 128.7 \\ 128.7 \\ 128.7 \\ 128.1 \\ 128.1 \\ 124.$$

H Si OH

 $R = N(SiMe_2Ph)-2,6-iPr_2C_6H_3$ (4)

Figure S7-2 ¹³C NMR spectrum of 4 in CDCl₃

 $^{-1.9}$

Figure S8-2 ¹³C NMR spectrum of 5 in CDCl₃

Figure S9-2 13 C NMR spectrum of 6 in C₆D₆

OH H. R ÔΗ $R = N(SiMe_2Ph)-2,4,6-Me_3C_6H_2$ (6) SiH SiMe₂ 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

-110

-130

-150

$$\begin{array}{c} < 7. \ 61 \\ 7. \ 56 \\ -7. \ 56 \\ -7. \ 56 \\ -6. \ 97 \\ -6. \ 97 \\ -6. \ 97 \\ -6. \ 97 \\ -6. \ 97 \\ -7. \ 55 \\ -3. \ 64 \\ -3. \ 64 \\ -3. \ 64 \\ -3. \ 64 \\ -3. \ 64 \\ -3. \ 64 \\ -1. \ 74 \\ -0. \ 29 \\ -1. \ 06 \\ -1. \ 00 \\ -1.$$

R = N(SiMe₂Ph)-2,6-*i*Pr₂C₆H₃ (7)

$$\begin{array}{c} \sim 148.2 \\ 1441.1 \\ 1411.1 \\ 1411.1 \\ 123$$

 $R = N(SiMe_2Ph)-2,6-iPr_2C_6H_3$ (7)

\sim	00	2	オントー		_	_	
~	~ii	<u></u> ;	ന്റ്ന്ന്	400	0	0001	01
4	44	č	8666		o'	N:00104	C.1
-	$\dot{-}$	=	2222	7-7-7	2	ରା ଭିର୍ଭ ଭିନ୍ନ କରୁ	Ö
	57		57.52	\searrow		$ \leq \leq > < < < < < < < < < < < < < < < < <$	

 $R = N(SiMe_2Ph)-2, 6-iPr_2C_6H_3$ (11)

