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Experimental Details

Materials and Methods 

4,4´-bipyridine, dibromomethane, 1,2-dibromoethane, 1,4-dibromobutane, bromoethane, 1-bromobutane, 

polyoxometalates H3PW12O40, H3PMo12O40 and solvents were commercially available and used as received. The 

double V-containing POM H5PMo10V2O40 was prepared according to the procedure described in our previous 

report.S1 Liquid-state 1H and 13C NMR spectra were measured with a Bruker DPX 500 spectrometer at ambient 

temperature in the solvents of D2O and D6-DMSO using TMS as internal reference. Fourier transform infrared 

spectroscopy (FT-IR) spectra were recorded on an Agilent Cary 660 FT-IR instrument (KBr discs) in the region 

4000~400 cm−1. Solid UV-visible adsorption spectra were measured with a SHIMADZU UV-2600 spectrometer 

and BaSO4 was used as an internal standard. Electron spin resonance (ESR) spectra were recorded on a Bruker 

EMX-10/12 spectrometer at the X-band at ambient temperature. X-ray photoelectron spectra (XPS) were conducted 

on a PHI 5000 Versa Probe X-ray photoelectron spectrometer equipped with Al Kα radiation (1486.6 eV). The 

CHN elemental analysis was performed on an elemental analyzer Vario EL cube. Thermogravimetric analysis 

(TGA) was carried out with a STA409 instrument in air atmosphere at a heating rate of 10 oC min-1. X-ray 

diffraction (XRD) measurements were made with a SmartLab diffractometer (Rigaku Corporation) equipped with a 

9 kW rotating-anode Cu source at 40 kV and 200 mA, from 5 to 80o with a scan rate of 0.2o s-1. Field emission 

scanning electron microscope (FESEM; Hitachi S-4800, accelerated voltage: 5 kV) accompanied by Energy 

dispersive X-ray spectrometry (EDS; accelerated voltage: 20 kV) was used to study the morphology and the 

element mapping distribution. Transmission Electron Microscopy (TEM) images were obtained by using a JEOL 

JEM-2100F 200 kV field-emission transmission electron microscope. N2 adsorption isotherms were measured at 77 

K with the BELSORP-MINI analyzer. Before measurement, porous carbon samples were degassed for 3 h at 150 

oC in a high vacuum. 

Synthesis of polyoxometalate-based mesoporous ionic networks (PMINs)

Firstly, three cationic polyviologens were prepared by one-step quaternization reactions of 4,4´-bipyridine with 

dibromoalkane including dibromomethane (DBM), 1,2-dibromoethane (DBE) and 1,4-dibromobutane (DBB). In a 

typical run, 4,4´-bipyridine (1.56 g, 10 mmol) was dissolved in 5 mL DBM to form a homogeneous solution at 

room temperature. Then, the solution was heated at 100 oC for 48 h in a 25 mL Teflon-lined autoclave. After 

reaction, the yellow solid was dispersed into ethanol with vigorous stirring for 4 h, and finally the yellow solid 
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product [PMV]Br2 was obtained by the successive filtration, washing with ethanol and drying processes. In similar 

processes, the other two polyviologens [PEV]Br2 and [PBV]Br2 were synthesized by using DBE or DBB 

respectively.

[PMV]Br2: a yellow solid yield of 60%, 1H NMR (300 MHz, D2O, TMS) (Fig. S1A): δ 9.62~9.68 (4H), 9.02 

(4H), 8.77~8.85 (4H), 8.49~8.55 (4H) and 7.64 ppm (2H). 13C NMR (75.5 MHz, D2O, TMS) (Fig. S1B): 152.54, 

149.35, 145.91, 131.55 and 80.30 ppm. Elemental analysis: Found C, 38.95; H, 3.60; N, 8.35. Calc. for [PMV]Br2 

C11H10N2Br2(0.5H2O): C, 38.97; H, 3.27; N, 8.26 wt%.

[PEV]Br2: a brown solid yield of 76%, 1H NMR (300 MHz, D2O, TMS) (Fig. S2A): δ 9.50 (4H), 9.32(4H), 

8.93 (4H) and 4.74 ppm (4H). 13C NMR (75.5 MHz, D2O, TMS) (Fig. S2B): 149.06, 145.56, 129.39~131.17 and 

63.15 ppm. Elemental analysis: Found C 39.61, H 4.19, N 7.28. Calc. for [PEV]Br2 C12H12N2Br2(H2O): C, 39.81; H, 

3.90; N, 7.74 wt%.

[PBV]Br2: a yellow solid yield of 63%, 1H NMR (300 MHz, D2O, TMS) (Fig. 3A): δ 9.17 (4H), 8.57(4H), 

4.84 (4H) and 2.28 ppm (4H). 13C NMR (75.5 MHz, D2O, TMS) (Fig. 3B): 152.88, 148.19, 129.82, 63.71 and 

30.03 ppm. Elemental analysis: Found C, 42.20; H, 5.05; N, 6.67. Calc. for [PBV]Br2 C14H16N2Br2(1.5H2O): C, 

42.13; H, 4.80; N, 7.02 wt%.

Secondly, polyoxometalate-based mesoporous ionic networks (PMINs) were prepared through the ionic self-

assembly of the above water-soluble cationic polyviologens with heteropolyacids such as H5PMo10V2O40, 

H5PMo12O40 and H3PW12O40. In a typical synthesis by using [PMV]Br2 and H5PMo10V2O40, [PMV]Br2 (0.100 g, 5 

mg mL-1) with 0.5960 mmol N+ cationic center was dissolved in deionized water (20 mL), and the equivalent 

H5PMo10V2O40 (0.207 g, 0.119 mmol) aqueous solution (10 mg mL-1) was slowly added into the above 

homogeneous solution with steady stirring for 24 h at room temperature. Finally, after the consecutive basic 

operations including filtration, washing and drying, the yellow product named PMIN-1(V) was obtained with a 

yield of 78%. Ionic self-assembly of [PEV]Br2 and [PBV]Br2 with H5PMo10V2O40 can produce the samples PMIN-

2(V) and PMIN-3(V), respectively. Besides, H3PMo12O40 and H3PW12O40 were also employed as anionic POM 

units for preparing a series of mesoporous ionic networks. The corresponding elemental analysis results and 

specific molecular formulas were listed in Table S1.

Synthesis of the control viologen-polyoxometalate ionic hybrids

Two viologen-based dicationic salts were also synthesized by the reaction of 4,4´-bipyridine with bromoalkanes 

including bromoethane and 1-bromobutane. In a typical run, 4,4´-bipyridine (0.78 g, 5 mmol) and bromoethane 
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(1.64 g, 15 mmol) was dissolved in solvent acetonitrile (20 mL), and then the solution was moved into a Teflon-

lined autoclave, which was taken place at 100 oC in a constant temperature oven for 24 h. After reaction, the yellow 

solid product [C2Bpy]Br2 was obtained from the solution by the successive filtration, washing with ethanol and 

drying processes. [C4Bpy]Br2 was similarly prepared by the reaction of 4,4´-bipyridine and 1-bromobutane.

[C2Bpy]Br2: a yellow solid yield of 80%, 1H NMR (300 MHz, D2O, TMS) (Fig. S4A): δ 9.14~9.16 (4H), 

8.56~8.58 (4H), 4.80~4.82 (4H) and 1.69~1.74 ppm (6H). 13C NMR (75.5 MHz, D2O, TMS) (Fig. S4B): 152.64, 

147.90, 129.79, 60.39 and 18.44 ppm.

[C4Bpy]Br2: a yellow solid yield of 84%, 1H NMR (300 MHz, D2O, TMS) (Fig. S5A): δ 9.10~9.12 (4H), 

8.54~8.56 (4H), 4.72~4.74 (4H), 2.00~2.08 (4H), 1.35~1.42 (4H) and 0.91~0.96 ppm (6H). 13C NMR (75.5 MHz, 

D2O, TMS) (Fig. S5B): 152.60, 148.12, 129.72, 64.70, 35.28, 21.49 and 15.46 ppm.

POM-viologen ionic hybrids [C2Bpy]2.5PMoV2, [C4Bpy]2.5PMoV2 and [Bpy]2.5PMoV2 were prepared by the 

reaction of H5PMo10V2O40 with [C2Bpy]Br2, [C4Bpy]Br2 and 4,4´-bipyridine in aqueous solution, respectively. 

Elemental analyses for [C2Bpy]2.5PMoV2: Found C, 18.50; H, 2.05; N, 3.06. Calc. for (C14H18N2)2.5PMo10V2O40, C, 

18.53; H, 2.00; N, 3.09 wt%. [C4Bpy]2.5PMoV2: Found C, 22.32; H, 2.70; N, 2.90. Calc. for 

(C18H26N2)2.5PMo10V2O40, C, 22.44; H, 2.72; N, 2.91 wt%. [Bpy]2.5PMoV2: Found C, 14.05; H, 1.16; N, 3.28. Calc. 

for (C10H10N2)2.5PMo10V2O40, C, 14.11; H, 1.18; N, 3.29 wt%.

Catalysis assessment

Catalytic performances were assessed in the selective aerobic oxidation of 5-hydroxymethylfurfural (HMF) into 

2,5-diformylfuran (DFF) using O2 as oxidant. In a typical run, HMF (100.8 mg, 0.80 mmol), catalyst PMIN-2(V) 

(0.01 g), solvent DMSO (4 mL) were successively added into a 25 mL Schlenck tube, and then the tube was 

vacuumized by the water pump. The mixture was stirred at 120oC for 3 h in an oil bath with an oxygen balloon (1.0 

bar). After the reaction, 2-methyl-1-pentanol was added into the mixture as the internal standard, and then the 

homogeneous mixture was analyzed by gas chromatography (Agilent 7890B) equipped with a flame ionization 

detector and a capillary column (HP-5, 30 m × 0.25 mm × 0.25 µm). The solid catalyst could be also recovered by 

filtration or centrifugation, and used for the next run.
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Fig. S1 (A) 1H NMR and (B) 13C NMR spectra of [PMV]Br2.

(A)

(B)
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Fig. S2 (A) 1H NMR and (B) 13C NMR spectra of [PEV]Br2.

(A)

(B)



S7

Fig. S3 (A) 1H NMR and (B) 13C NMR spectra of [PBV]Br2.

(A)

(B)
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Fig. S4 (A) 1H NMR and (B) 13C NMR spectra of [C2Bpy]Br2.
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Fig. S5 (A) 1H NMR and (B) 13C NMR spectra of [C4Bpy]Br2.
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Fig. S6 (A) FT-IR spectra and (B) XRD patterns of (a) [PMV]Br2, (b) [PEV]Br2, and (c) [PBV]Br2. 
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Fig. S7 Differential refractive index GPC trace of polymers (a) [PMV]Br2 (Mw=19948Da), (b) [PEV]Br2 

(Mw=19810Da), and (c) [PBV]Br2 (Mw=19694Da) in water.
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Fig. S8 Low-resolution SEM images of (A) PMIN-1(V), (B) PMIN-2(V) and (C) PMIN-3(V).
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Fig. S9 (A) N2 adsorption-desorption isotherms and (B) BJH pore size distributions of PMIN-1(Mo), PMIN-1(W).

 

 

Fig. S10 SEM images of (A, B) PMIN-1(Mo) and (C,D) PMIN-1(W).
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Fig. S11 Thermogravimetric analysis (TGA) of (A) three polyviologens: [PMV]Br2, [PEV]Br2 and [PBV]Br2. (B) 
POM-based mesoporous ionic networks: PMIN-1(V), PMIN-2(V), and PMIN-3(V).
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Fig. S12 Influences of reaction conditions on the catalytic activity in oxidation of HMF to DFF by H5PMo10V2O40. 
(A) Solvent effect; (B) Temperature; (C) Amount of DMSO; (D) Reaction time. The optimized reaction conditions: 
HMF (100.8 mg, 0.80 mmol), catalyst (0.01 g, H5PMo10V2O40), oxygen balloon 1.0 bar, DMSO 4 mL, 120 oC, 3h.
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Fig. S13 Catalytic reusability of PMIN-2(V) for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) into 2,5-
diformylfuran (DFF). Reaction conditions: HMF (100.8 mg, 0.80 mmol), catalyst PMIN-2(V) (0.01 g), oxygen 
balloon (1.0 bar), DMSO (4 mL), 120 oC, 3 h.
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Fig. S14 FT-IR spectra of (a) fresh PMIN-2(V) (b) reused PMIN-2(V) from the fifth recycling run.
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Fig. 15 (A) N2 adsorption-desorption isotherms and (B) BJH mesopore size distribution of the reused 
PMIN-2(V) catalyst.

 

Fig. S16 (A) SEM image and (B) TEM image of the reused PMIN-2(V) catalyst from the fifth recycling 
run.
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Table S1 Elemental analysis results (CHN) of POM-based mesoporous ionic networks (PMINs).

Samples Molecular formula
C (wt %)

Found /Calcd.
H (wt %)

Found/Calcd.
N (wt %)

Found/Calcd.

PMIN-1(V) (C11H10N2)2.5PMo10V2O40(5H2O) 14.75/14.69 1.89/1.57 2.98/3.12

PMIN-2(V) (C12H12N2)2.5PMo10V2O40(10H2O) 15.27/15.18 1.92/2.12 2.74/2.95

PMIN-3(V) (C14H16N2)2.5PMo10V2O40(10H2O) 17.14/17.21 2.27/2.48 2.64/2.87

PMIN-1(Mo) (C11H10N2)1.5PMo12O40 10.54/9.54 1.46/0.78 2.27/2.02

PMIN-1(W) (C11H10N2)1.5PW12O40 6.56/6.33 1.18/0.48 1.16/1.34

The quantitative analysis of the composition of the PMINs has been measured by elemental analyses plus TG 

analyses, providing the accurate molecular formulas for each PMIN. Taking PMIN-1(V) as an example, the 

elemental analysis found (wt %) C 14.75, H 1.89, and N 2.98, well corresponding to the calculated values (wt %) of 

C 14.69, H 1.57, and N 3.12 based on the molecular formula of (C11H10N2)2.5PMo10V2O40(5H2O). The above result 

implies that the hybrid PMIN-1(V) is composed of two point five unit of viologen cations with one PMo10V2O40
5− 

anion, and five water molecules. Each PMIN sample possesses specific molecular formulas and chemical 

compositions in accordance with the related polyviologen cations and POM anions. 
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Table S2 Comparisons of BET surface areas and pore volumes of various POM-based porous materials.

Sample SBET (m2 g-1)a VP (cm3 g-1)b Reference

1-POMc 51 Not available S2

2-POMc 27 Not available S2

[TMGDH]2.3H0.7PW 28.0 0.06 S3

[TMGHA]2.4H0.6PW 25.0 0.11 S4

[MimHA]3PW 31.9 0.35 S4

[TAHpy]3PW-2 26.0 0.09 S5

[D-3-CNPy]2HPMoV2 41.4 0.46 S6

[D-3-NH2Py]2HPMoV2 46.6 0.36 S6

[Co(tacn)2][α-PW12O40]·2H2O 41 Not available S7

[Co(tacn)2]2[α-SiV2W10O40]·6H2O 25 Not available S7

[Ni(tacn)2]2[α-SiW12O40]·4H2O 31 Not available S7

[Ni(tacn)2]2[α-SiV2W10O38(OH)2]·3H2O 18 Not available S7

[Zn(dipp)(L)]4[PMo11VO40] 49.6 Not available S8

PIILP-PW4
d 42 0.15 S9

P-[DVB-VBIM]5PMoV2 104 0.17 S10

PW@HMP(1) 54 0.21 S11

PW@HMP(3) 65 0.23 S11

POSS-BM11-PW 42.0 0.16 S12

Cesium salt of [PW12O40]3- 156 0.052 S13

(NH4)3PW12O40 116 0.043 S14

PMIN-1(V) 72 0.24 This work

PMIN-2(V) 120 0.28 This work

PMIN-3(V) 115 0.17 This work

a BET surface area. b Pore volume. c POM: [ZnWZn2(H2O)2(ZnW9O34)2]12-; 1: tris[2-(trimethylammonium)-ethyl]-
1,3,5-benzenetricarboxylate; 2: 1,3,5-tris[4-(N,N,N-trimethylammoniumethylcarboxyl)-phenyl]benzene trications. d 

PIILP: polymer-immobilised ionic iquid phase. e POSS: polyhedral oligomeric silsesquioxane.
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Table S3 The catalytic performances in the aerobic oxidation of HMF to DFF under atmospheric pressure over 
various heterogeneous catalysts.

Reaction condition
Catalyst

T, t & P
HMF/Catalyst

(mg/mg)

HMF
Conv. (%)

DFF
Sel. (%)

TON a Reference

Ru/HT
393 K, 12 h,
O2 (1 bar)

126/100 94.8 97 22 S15

SBA-NH2-Cu2+ 
and SBA-NH2-

VO2+

110 ºC, 6 h
O2 (20 mL/min)

100/130 98.8 63.5 33 S16

polyaniline–VO
(acac)2

110 °C, 12 h
O2 (30mL/min)

100/80 99.2 86.8 38 S17

Ru-6C-1N
105 °C, 6 h
O2 (1 bar)

126/45 94 89 158 S18

Fe3O4@SiO2-
NH2-Ru(III)

110 °C, 4 h
O2 (20 mL/min)

100/150 99.7 87.1 154 S19

Fe2O3@HAP-Ru
90 °C, 12 h

O2 (20 mL/min)
100/150 100 89.1 26 S20

V-g-C3N4
130 °C, 12 h

O2 (1 bar)
126/100 >99 82 5.8 S21

Fe3O4/Mn3O4
120 °C, 12 h

O2 (20 mL/min)
126/160 100 82.1 0.397 S22

V2O5/H-beta
100 ºC, 5.5 h

O2 flow (1 bar)
100/100 84 >99 34 S23

K-OMS-2
110 °C, 6 h

O2 (10 mL/min)
126/100 100 99 0.792 S24

PMIN-2(V)
120 ºC, 3 h

O2 balloon 1.0 bar
100.8/10 100 86.8 121 This work

a Turnover number (TON): mole of product DFF per mol of catalyst.
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Scheme S1 Proposed possible catalytic mechanism for the aerobic oxidation of HMF to DFF with O2 over the 
catalyst PMIN-2(V).

According to previous studies, the V species in V-POMs are well accepted as the catalytically active sites for 

versatile organic oxidations.S25,S26 In the aerobic oxidation of HMF to DFF, the catalytic activity center is V-O-V 

structure in PMoV anion of PMIN-2(V) catalyst, while polyviologen actions affect the charge state of PMoV anions. 

PMoV anion takes a catalytic effect through follow Mars-van Krevelen-type mechanism, where the lattice oxygen 

of PMoV selectively oxygenates organic substrates via a valence variation between V5+ and V4+.S27,S28

Based on the previous reports, we provide a proposed possible catalytic mechanism for the aerobic oxidation of 

HMF to DFF with O2 over the catalyst PMIN-2(V). As depicted in Scheme R1, the whole aerobic oxidation process 

follows Mars-van Krevelen mechanism, i.e. an electron-oxygen transfer (ET-OT) mechanism.S29-S31 First, the 

reaction substrates HMF and O2 adsorb dissociatively on the PMIN-2(V) catalyst surface to form the adsorbed 

alcoholate intermediate HMF* and the atomic oxygen (O*) species, respectively.S32 Immediately, the original 

oxidation state of PMoV with V5+ species (denoted as PMoV[ox]), attacks the intermediate HMF* to produce the 

adsorbed DFF and water, wherein the lattice oxygen atom of a V-O-V structure in PMoV[ox] moves into the 

intermediate with the PMoV[ox], forming reduction of V5+ to V4+-containing PMoV[red].S26,S29 Finally, the catalytic 

cycle is closed with the timely expelling of product DFF and water from the catalyst surfaces and the resuming of 

PMoV[ox] after O2 re-oxidizes V4+ of PMoV[red] into V5+ species. The formation of the reduced V4+ centers was 

detected by XPS and ESR as mentioned before. It is worthy to note that the O-defect reduced V4+-containing 

PMoV [red] in PMIN-2(V) can promote the indirect dissociation of O2 molecule by the oxidation of HMF to 

DFF,S33 thus providing the enhanced heterogeneous catalytic activity compared with the homogeneous counterpart. 

According to a very recently report by the theoretical study, the oxidation of each HMF catalyzed by POMs 

involves two main reaction steps: the cleavage of the O–H bond in the hydroxyl group and that of the C–H bond in 
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the methylene group of HMF.S33
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