Supporting Information

Notable Differences between Oxidized Diruthenium Complexes

Bridged by Four Isomeric Diethynyl Benzodithiophene Ligands

Ya-Ping Ou^{†,‡,⊥}, Jing Zhang^{†,⊥}, Fuxing Zhang^{‡,§}, Daizhi Kuang^{‡,§}, František Hartl^{*,#}, Li Rao[†], Sheng Hua Liu^{*,†}

*Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
*College of Chemistry and Material Science, Hengyang Normal University, Hengyang, Hunan 421008, P.R. China
*Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang Normal University, Hengyang, Hunan 421008, P.R. China
*Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.

*Corresponding authors:

E-mail: f.hartl@readig.ac.uk; chshliu@mail.ccnu.edu.cn

[⊥]These authors contributed equally to this work.

TABLE OF CONTENTS

1. Crystallographic Information (Tables S1-S4)	S2
2. IR, UV-vis-NIR Spectroelectrochemical Information (Figures S1-S4)	S5
3. DFT Calculations (Figures S5-S8, Tables S5-S16)	S8
4. NMR Information (Figures S9-S20)	S16

1. Crystallographic Information

 Table S1. Crystal Data and Data Collection and Refinement Parameters for

 Complexes 1 - 3.

Complexes	3(1), 4CH ₂ Cl ₂ , 2(PhCH ₃)	2	4(3), CH ₂ Cl ₂		
Formula FW	$\begin{array}{c} C_{276}H_{270}Cl_8P_{12}Ru_6S_6\\ 5041.01\end{array}$	$\begin{array}{c} C_{86}H_{82}P_4Ru_2S_2\\ 1505.68\end{array}$	C ₃₄₅ H ₃₂₈ Cl ₂ P ₁₆ Ru ₈ S ₈ 6105.53		
Temperature	296(2) K	293(2) K	296(2) K		
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å		
Cryst. Syst.	Triclinic	Monoclinic	Monoclinic		
Space group	<i>P</i> -1	$P2_{1}/m$	P2/m		
a(Å)	13.848(3)	16.936(3)	16.6322(16)		
$b(\text{\AA})$	16.508(3)	11.920(2)	24.054(2)		
$c(\text{\AA})$	28.270(6)	20.375(4)	38.040(4)		
$\alpha(^{\circ})$	87.931(4)	90	90		
$\beta(^{\circ})$	77.753(4)	111.59(3)	96.785(2)		
$\gamma(^{\circ})$	76.060(3)	90	90		
$V(Å^3)$	6129(2)	3824.6(13)	15112(3)		
Ζ	1	2	2		
$D_{\text{calc}} (\text{mg m}^{-3})$	1.366	1.307	1.342		
Abs. coeff. (mm ⁻¹)	0.632	0.576	0.602		
<i>F</i> (000)	2602	1556	6304		
Crystal size (mm ³)	$0.23\ \times 0.20 \times 0.02$	$0.16 \times 0.12 \times 0.10$	$0.16 \times 0.12 \times 0.10$		
θ Range (°)	1.46 to 25.50	1.34 to 22.66	1.00 to 25.50		
Index ranges	-16≤ <i>h</i> ≤16, -19≤ <i>k</i> ≤19, -34≤ <i>l</i> ≤34	-18≤h≤12, - 12≤k≤12, -21≤l≤22	-19≤ <i>h</i> ≤20, - 29≤ <i>k</i> ≤29, -46≤ <i>l</i> ≤46		
Reflections collected	40240	16203	109441		
Independent reflect	22489	5030	28003		
macpendent reneet.	[R(int) = 0.0541]	[R(int) = 0.0466]	[R(int) = 0.0519]		
Data / restr. / param.	22489 / 59 / 1409	5030 / 29 / 451	28003 / 55 / 1755		
Goodness-of-fit on F^2	1.010	1.070	1.054		
Final R indices	R1 = 0.0741,	R1 = 0.0494,	R1 = 0.0502,		
[<i>I</i> >2σ(<i>I</i>)]	wR2 = 0.2044	wR2 = 0.1417	wR2 = 0.1298		
R indices (all data)	R1 = 0.1144,	R1 = 0.0696,	R1 = 0.0851,		
re indices (un duta)	wR2 = 0.2413	wR2 = 0.1571	wR2 = 0.1457		

Diff. peak and hole			
(e.Å ⁻³)	1.408 and -0.863	0.501 and -0.357	1.105 and -0.536

	2	[2-H]	[2-H] ⁺	[2-H] ²⁺						
Bond Lengths (Å)										
Ru(1)–C(37)	1.985	2.011	1.967	1.933						
Ru(1)-P(1, 2)	2.269, 2.268	2.280, 2.282	2.301, 2.303	2.322, 2.323						
C(37)–C(38)	1.217	1.229	1.241	1.252						
C(38)–C(39)	1.398	1.402	1.381	1.365						
C(39)–C(40)	1.352	1.371	1.384	1.393						
C(40)–C(41)	1.412	1.439	1.424	1.413						
C(41)–C(43)	1.381	1.400	1.399	1.397						
C(41)–C(42)	1.384	1.432	1.450	1.464						
C(42)–C(43)	1.408	1.393	1.391	1.393						
C(42)–S(1)	1.765	1.754	1.742	1.728						
S(1)-C(39)	1.791	1.788	1.797	1.810						
	Bone	d Angles (deg)								
P(1)-Ru(1)-P(2)	82.54	93.09	92.23	90.87						
Ru(1)–C(37)–C(38)	179.29	179.08	178.62	178.20						
C(37)–C(38)–C(39)	177.87	178.23	179.62	178.49						

Table S2. Selected Bond Lengths (Å) and Angles (deg) in the Crystal Structure of **2** and the DFT-Optimized Structures $[2-H]^{n+}(n = 0, 1, 2)$

Table S3. Selected Bond Lengths (Å) and Angles (deg) in the Crystal Structure of **3** and the DFT-Optimized Structures $[3-H]^{n+}(n = 0, 1, 2)$

	3	[3- H]	[3-H] ⁺	[3-H] ²⁺
	Bond	Lengths (Å)		
Ru(1A)–C(10A)	2.002	2.012	1.968	1.936
Ru(1A)–P(1A, 2A)	2.275, 2.269	2.281, 2.279	2.302, 2.302	2.323, 2.321
C(10A)–C(9A)	1.215	1.229	1.240	1.251
C(9A)–C(8A)	1.438	1.403	1.381	1.368
C(8A)–C(7A)	1.384	1.373	1.397	1.415
C(7A)–C(2A)	1.441	1.437	1.417	1.401
C(2A)–C(3A)	1.390	1.416	1.427	1.437
C(3A)–C(4A)	1.390	1.385	1.380	1.371
C(4A)–C(5A)	1.390	1.406	1.409	1.419
C(5A)–S(2A)	1.733	1.750	1.733	1.711
S(2A)–C(12A)	1.729	1.782	1.795	1.810
C(8A)–S(1A)	1.753	1.785	1.775	1.773
S(1A)–C(1A)	1.726	1.746	1.747	1.747
C(1A)–C(2A)	1.390	1.418	1.420	1.423
C(1A)–C(6A)	1.390	1.408	1.402	1.400
C(6A)-C(5A)	1.390	1.421	1.440	1.451

C(6A)–C(11A)	1.445	1.434	1.422	1.417					
C(11A)–C(12A)	1.389	1.374	1.383	1.388					
C(12A)–C(13A)	1.435	1.402	1.383	1.370					
C(13A)–C(14A)	1.216	1.229	1.239	1.250					
C(14A)–Ru(2A)	2.007	2.010	1.971	1.939					
Ru(2A)–P(3A, 4A)	2.267, 2.264	2.281, 2.280	2.300, 2.301	2.322, 2.320					
Bond Angles (deg)									
P(1A)-Ru(1A)-P(2A)	82.93	93.07	92.28	91.02					
Ru(1A)-C(10A)-C(9A)	174.23	178.88	177.80	177.73					
C(10A)C(9A)C(8A)	177.02	178.37	177.55	178.04					
P(3A)- $Ru(2A)$ - $P(4A)$	83.57	93.11	92.46	91.06					
Ru(1A)–C(14A)–C(13A)	168.87	178.96	178.46	177.73					
C(14A)–C(13A)–C(12A)	171.05	178.93	177.43	175.26					

Table S4. Selected Bond Lengths (Å) and Angles (deg) from the DFT-Optimized Structures $[4-H]^{n+}(n = 0, 1, 2)$

	[4-H]	[4-H] ⁺	[4-H] ²⁺
	Bond Leng	ths (Å)	
Ru(1)–C(13)	2.011	1.968	1.930
Ru(1)–P(29, 30)	2.281, 2.280	2.302, 2.299	2.322, 2.321
C(13)–C(12)	1.229	1.240	1.253
C(12)–C(11)	1.402	1.379	1.359
C(11)–S(36)	1.781	1.772	1.766
S(36)–C(4)	1.751	1.751	1.752
C(4)–C(5)	1.404	1.389	1.375
C(4)–C(3)	1.419	1.432	1.447
C(3)–C(34)	1.433	1.408	1.384
C(34)–C(11)	1.375	1.402	1.430
	Bond Angle	es (deg)	
P(29)-Ru(1)-P(30)	93.06	92.35	90.99
Ru(1)–C(13)–C(12)	179.28	178.94	178.77
C(13)–C(12)–C(11)	179.80	179.94	178.88

2. IR, UV-vis-NIR Spectroelectrochemical Information

Figure S1. Spectral changes in the IR v(C=C) (right) and NIR (left) regions recorded for complexes $[1]^{n+}$, n = 0 (black) and +1 (red) electrochemically generated in CH₂Cl₂/10⁻¹ M n-Bu₄NPF₆ at 223 K within an OTTLE cell.

Figure S2. IR spectral changes obtained in the IR $v(C \equiv C)$ (right) and NIR (left) regions recorded during the irreversible oxidation of neutral 2 (red) in CH₂Cl₂ at 223 K.

Figure S3. UV-vis absorption spectra of complexes 2 and 3 in CH₂Cl₂ at 293 K.

Figure S4. The UV-vis-NIR spectra of $[4]^{n+}$ (n = 0, 1, 2) collected in the course of the stepwise oxidation of 4 in dichloromethane at 293 K within an OTTLE cell.

3. DFT Calculations

Figure S5. Selected molecular orbitals in the redox series $[2-H]^{n+}$ (n = 0, 1, 2) plotted with contour values ± 0.04 (e/bohr³)^{1/2}

Figure S6. Selected molecular orbitals in the redox series $[3-H]^{n+}$ (n = 0, 1, 2) plotted with contour values ± 0.04 (e/bohr³)^{1/2}

Figure S7. Selected molecular orbitals in the redox series $[4-H]^{n+}$ (n = 0, 1, 2) plotted with contour values ± 0.04 (e/bohr³)^{1/2}

Figure S8. Isosurface plots of molecular orbitals involved in the major electronic excitations calculated for *trans*- $[4]^+$ and *cis*- $[4]^+$

 Table S5. Energies and composition of selected molecular orbitals of model complex

 [1-H].

L].										
MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
181	L+5	-0.03	2	4	34	1	0	1	41	4	2
180	L+4	-0.22	8	4	34	5	0	4	28	4	8

179	L+3	-0.22	8	4	28	4	0	5	34	4	8
178	L+2	-0.71	1	1	3	9	72	9	3	1	1
177	L+1	-0.85	25	22	50	0	0	0	0	0	0
176	LUMO	-0.85	0	0	0	0	0	0	50	22	25
175	НОМО	-4.22	1	1	8	14	52	14	8	1	1
174	H-1	-5.00	4	2	17	17	20	17	17	2	4
173	Н-2	-5.03	1	0	3	3	86	3	3	0	1
172	Н-3	-5.03	3	1	28	16	4	16	28	1	3
171	H-4	-5.42	3	1	28	16	4	16	28	1	3
170	H-5	-5.94	12	3	22	10	8	9	19	3	12

Table S6.	Energies	and comp	osition	of selected	molecular	orbitals	of model	complex
[1-H]+.								

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
181α	α-LUSO+5	-2.56	1	1	3	10	70	10	3	1	1
180β	β-LUSO+5	-2.67	10	6	28	5	0	5	28	6	10
180α	α-LUSO+4	-2.72	10	6	28	5	0	5	28	6	10
179β	β-LUSO+4	-2.68	10	6	28	5	0	5	28	6	10
179α	α-LUSO+3	-2.72	10	6	28	5	0	5	28	6	10
178β	β-LUSO+3	-3.30	12	10	23	0	0	0	27	12	14
178α	α-LUSO+2	-3.34	0	0	0	0	0	0	49	22	26
177β	β-LUSO+2	-3.30	14	12	27	0	0	0	23	10	12
177α	α-LUSO+1	-3.34	26	22	49	0	0	0	0	0	0
176β	β-LUSO+1	-3.61	1	1	4	10	68	10	4	1	1
176α	α-LUSO	-3.88	1	1	3	9	72	9	3	1	1
175β	β-LUSO	-6.01	2	1	9	13	50	13	9	1	2
175α	α-HOSO	-7.04	2	1	10	13	48	13	10	1	2
174β	β-HOSO	-7.30	4	2	18	14	24	14	18	2	4
174α	α-HOSO-1	-7.78	5	2	22	13	16	13	22	2	5
173β	β-HOSO-1	-7.86	2	1	6	3	76	3	6	1	2
173α	α-HOSO-2	-7.98	1	0	4	2	86	2	4	0	1
172β	β-HOSO-2	-8.03	4	1	29	14	4	14	29	1	4
172α	α-HOSO-3	-8.08	4	1	29	13	6	13	29	1	4
171β	β-HOSO-3	-8.05	4	1	29	13	6	13	29	1	4
171α	α-HOSO-4	-8.09	4	1	29	13	6	13	29	1	13
170β	β-HOSO-4	-8.44	13	3	22	9	4	9	22	3	13
170α	α-HOSO-5	-8.47	13	3	22	9	4	9	22	3	13
169β	β-HOSO-5	-8.44	13	3	22	9	4	9	22	3	13

 Table S7. Energies and composition of frontier molecular orbitals of model complex

 [1-H]²⁺.

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
180	L+5	-5.27	10	6	27	5	0	5	27	6	10

179	L+4	-5.28	2	1	5	10	64	10	5	1	2
178	L+3	-5.89	13	12	24	0	0	0	24	12	13
177	L+2	-5.89	13	12	24	0	0	0	24	12	13
176	L+1	-6.63	1	1	4	10	68	10	4	1	1
175	LUMO	-8.74	2	1	10	12	50	12	10	1	2
174	НОМО	-10.07	5	2	18	11	28	11	18	2	5
173	H-1	-10.63	3	1	7	2	74	2	7	1	3
172	Н-2	-10.77	3	1	29	14	6	14	29	1	3
171	Н-3	-10.79	3	1	29	14	6	14	29	1	3
170	H-4	-10.99	14	2	22	9	6	9	22	2	14
169	H-5	-11.00	14	2	22	9	6	9	22	2	14

Table S8.	Energies and composition	of selected	molecular	orbitals	of model	complex
[2-H].						

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
181	L+5	-0.18	1	1	4	7	74	7	4	1	1
180	L+4	-0.21	13	5	48	7	0	2	13	2	4
179	L+3	-0.22	4	2	13	2	0	7	48	5	13
178	L+2	-0.47	1	1	2	8	76	8	2	1	1
177	L+1	-0.84	25	22	50	0	0	0	0	0	0
176	LUMO	-0.84	0	0	0	0	0	0	50	22	25
175	НОМО	-4.46	2	1	12	18	44	12	8	1	2
174	H-1	-4.50	1	1	4	6	65	12	8	1	2
173	Н-2	-5.35	2	1	11	6	30	17	27	2	4
172	Н-3	-5.39	4	1	36	21	6	11	18	1	2
171	H-4	-5.44	3	1	25	12	18	12	25	1	2
170	Н-5	-5.88	7	2	15	5	17	9	27	4	14

 Table S9. Energies and composition of selected molecular orbitals of model

 complexes [2-H]⁺.

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
181α	α-LUSO+5	-2.75	20	11	56	10	0	0	0	0	0
180β	β-LUSO+5	-2.72	0	0	0	0	0	10	56	11	20
180α	α-LUSO+4	-2.77	0	0	0	0	0	10	56	11	20
179β	β-LUSO+4	-2.96	1	1	3	7	76	7	3	1	1
179α	α-LUSO+3	-3.26	1	1	3	8	77	6	2	1	1
178β	β-LUSO+3	-3.27	1	1	3	8	73	9	3	1	1
178α	α-LUSO+2	-3.38	26	23	49	0	0	0	0	0	0
177β	β-LUSO+2	-3.33	26	23	49	0	0	0	0	0	0
177α	α-LUSO+1	-3.39	1	0	2	7	68	9	7	2	4
176β	β-LUSO+1	-3.35	0	0	0	0	0	0	49	22	25
176α	α-LUSO	-3.40	0	0	0	1	6	1	44	22	22
175β	β-LUSO	-6.26	2	1	11	14	44	14	11	1	2

175α	α-HOSO	-7.30	0	2	18	20	59	0	0	0	0
174β	β-HOSO	-6.90	3	1	13	12	42	12	13	1	3
174α	α-HOSO-1	-7.31	1	0	2	2	48	22	19	2	4
173β	β-HOSO-1	-7.93	2	1	10	4	66	4	10	1	2
173α	α-HOSO-2	-8.10	6	1	44	21	10	5	10	1	2
172β	β-HOSO-2	-8.06	6	2	52	25	7	2	5	0	1
172α	α-HOSO-3	-8.14	3	1	15	6	10	18	40	1	6
171β	β-HOSO-3	-8.09	1	0	5	2	7	25	53	1	6
171α	α-HOSO-4	-8.17	4	2	13	5	36	10	23	2	5
170β	β-HOSO-4	-8.44	20	4	34	12	17	2	7	1	3
170α	α-HOSO-5	-8.49	25	5	41	19	6	1	2	0	1
169β	β-HOSO-5	-8.47	5	1	10	4	9	13	34	4	20

Table S10. Energies and composition of selected molecular orbitals of model complex $[2-H]^{2+}$.

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
180	L+5	-5.34	21	12	54	11	0	0	0	0	0
179	L+4	-5.94	2	1	5	6	67	6	7	2	4
178	L+3	-5.96	4	3	7	1	2	0	39	19	21
177	L+2	-5.97	21	20	39	1	8	1	5	3	2
176	L+1	-6.10	1	1	3	9	72	9	3	1	1
175	LUMO	-9.08	3	2	13	14	37	13	13	2	3
174	НОМО	-9.63	3	2	12	10	44	10	13	2	3
173	H-1	-10.67	4	2	8	3	66	3	8	2	4
172	Н-2	-10.82	2	1	26	15	6	16	30	1	3
171	Н-3	-10.85	3	1	30	16	6	15	26	1	2
170	H-4	-11.04	3	1	5	1	5	14	38	5	28
169	H-5	-11.05	28	5	38	14	5	1	5	1	3

Table S11. Energies and composition of selected molecular orbitals of model complex [3-H].

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
181	L+5	-0.18	0	0	6	3	64	9	17	0	1
180	L+4	-0.20	0	0	1	0	6	10	56	7	17
179	L+3	-0.21	17	7	56	10	6	0	1	0	0
178	L+2	-0.45	1	0	5	10	78	4	2	0	0
177	L+1	-0.82	0	0	0	0	0	0	50	22	24
176	LUMO	-0.84	24	22	50	0	0	0	0	0	0
175	НОМО	-4.52	1	0	7	13	58	13	7	0	1
174	H-1	-4.66	1	0	8	12	55	14	9	0	1
173	Н-2	-5.19	0	0	0	0	4	36	47	4	9
172	Н-3	-5.24	9	4	47	36	4	0	0	0	0
171	H-4	-5.57	6	2	29	7	47	1	6	1	1

170	H-5	-5.68	3	1	7	1	21	4	43	4	16

 Table S12. Energies and composition of selected molecular orbitals of model

 complex [3-H]⁺.

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
181α	α-LUSO+5	-2.69	19	10	56	10	0	0	0	0	0
180β	β-LUSO+5	-2.76	0	0	0	0	0	10	57	10	19
180α	α-LUSO+4	-2.81	0	0	0	0	0	0	56	10	19
179β	β-LUSO+4	-3.08	1	1	3	7	73	9	4	1	1
179α	α-LUSO+3	-3.19	1	1	2	9	75	8	2	1	1
178β	β-LUSO+3	-3.25	3	1	7	7	72	6	2	1	1
178α	α-LUSO+2	-3.31	26	22	49	0	0	0	0	0	0
177β	β-LUSO+2	-3.27	24	22	45	1	5	0	0	0	0
177α	α-LUSO+1	-3.43	0	0	0	0	0	0	49	22	26
176β	β-LUSO+1	-3.39	0	0	0	0	0	0	49	22	26
176α	α-LUSO	-3.59	0	1	2	6	79	9	2	1	0
175β	β-LUSO	-6.30	2	1	10	12	47	14	11	1	2
175α	α-HOSO	-7.34	6	2	23	23	41	2	2	0	1
174β	β-HOSO	-6.94	3	2	16	15	31	14	14	2	3
174α	α-HOSO-1	-7.41	1	0	2	2	44	23	21	2	5
173β	β-HOSO-1	-8.02	8	2	59	26	0	0	0	0	0
173α	α-HOSO-2	-8.06	8	2	59	26	0	0	0	0	0
172β	β-HOSO-2	-8.13	0	0	0	0	0	27	59	2	7
172α	α-HOSO-3	-8.18	0	0	0	0	0	26	59	2	8
171β	β-HOSO-3	-8.25	7	2	21	5	61	1	2	0	1
171α	α-HOSO-4	-8.43	20	4	34	14	26	0	1	0	1
170β	β-HOSO-4	-8.39	0	0	0	0	62	5	23	2	8
170α	α-HOSO-5	-8.47	13	3	24	10	44	1	3	1	1
169β	β-HOSO-5	-8.41	25	5	43	19	3	0	0	0	0

Table S13. Energies and composition of selected molecular orbitals of modelcomplex $[3-H]^{2+}$.

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
180	L+5	-5.36	0	0	0	0	0	10	55	11	22
179	L+4	-5.91	25	18	43	1	12	1	0	0	0
178	L+3	-5.93	3	5	8	9	65	6	3	0	1
177	L+2	-5.99	0	0	0	0	0	0	47	22	27
176	L+1	-6.26	1	1	2	6	76	9	3	1	1
175	LUMO	-9.16	3	2	12	11	43	12	12	2	3
174	НОМО	-9.68	4	2	17	14	31	12	14	2	4
173	H-1	-10.80	7	2	57	28	0	0	0	0	0
172	Н-2	-10.87	0	0	0	0	0	28	57	2	7
171	Н-3	-11.01	29	5	41	14	5	0	1	0	0

170	H-4	-11.06	9	2	13	5	47	3	12	1	8
169	H-5	-11.09	2	1	3	1	16	13	36	4	24

 Table S14. Energies and composition of selected molecular orbitals of model complex [4-H].

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
181	L+5	-0.04	0	0	4	0	4	1	71	6	3
180	L+4	-0.21	17	6	61	9	0	0	0	0	0
179	L+3	-0.22	0	0	0	0	0	9	61	6	17
178	L+2	-0.66	0	0	3	8	78	8	3	0	0
177	L+1	-0.83	25	23	50	0	0	0	0	0	0
176	LUMO	-0.85	0	0	0	0	0	0	50	23	25
175	НОМО	-4.33	1	0	6	12	58	14	8	0	1
174	H-1	-4.82	1	1	12	16	44	13	11	1	1
173	Н-2	-5.23	8	3	47	35	7	0	0	0	0
172	Н-3	-5.39	0	0	0	0	7	31	52	2	6
171	H-4	-5.51	1	1	7	2	76	3	8	1	1
170	Н-5	-5.69	13	4	35	4	26	3	11	1	3

Table	S15 .	Energies	and	composition	of	selected	molecular	orbitals	of	model
comple	x [4-]	H]+.								

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
181α	α-LUSO+5	-2.77	0	0	0	0	0	10	56	10	20
180β	β-LUSO+5	-2.73	0	0	1	0	0	10	55	10	20
180α	α-LUSO+4	-2.77	20	10	56	10	0	0	0	0	0
179β	β-LUSO+4	-2.73	20	10	55	10	0	0	1	0	0
179α	α-LUSO+3	-2.90	1	1	3	8	74	8	3	1	1
178β	β-LUSO+3	-3.35	0	0	0	0	0	0	49	22	27
178α	α-LUSO+2	-3.39	0	0	0	0	0	0	49	22	27
177β	β-LUSO+2	-3.37	27	22	49	0	0	0	0	0	0
177α	α-LUSO+1	-3.41	27	22	49	0	0	0	0	0	0
176β	β-LUSO+1	-3.62	1	1	3	9	72	9	3	1	1
176α	α-LUSO	-3.85	1	1	3	9	72	9	3	1	1
175β	β-LUSO	-6.12	2	1	9	13	50	13	9	1	2
175α	α-HOSO	-7.17	2	1	10	12	50	12	10	1	2
174β	β-HOSO	-7.20	3	2	16	13	32	13	16	2	3
174α	α-HOSO-1	-7.62	3	2	15	12	36	12	15	2	3
173β	β-HOSO-1	-8.10	0	0	1	1	6	25	57	2	8
173α	α-HOSO-2	-8.14	0	0	1	0	6	24	58	2	9
172β	β-HOSO-2	-8.11	9	2	58	24	6	0	1	0	0
172α	α-HOSO-3	-8.15	9	2	58	24	6	0	1	0	0
171β	β-HOSO-3	-8.25	5	2	17	4	44	4	17	2	5
171α	α-HOSO-4	-8.51	3	1	6	2	22	13	31	4	18

170β	β-HOSO-4	-8.45	1	0	3	1	83	2	6	1	3
170α	α-HOSO-5	-8.53	21	4	35	16	13	2	5	1	3
169β	β-HOSO-5	-8.50	6	1	7	3	8	16	35	4	20

 Table S16. Energies and composition of selected molecular orbitals of model

 complex [4-H]²⁺.

MO	Orbitals	eV	Cp1	(PH ₃) ₂ 1	Ru1	(C≡C)1	$C_{10}H_4S_2$	(C≡C)2	Ru2	(PH ₃) ₂ 2	Cp2
180	L+5	-5.37	21	11	54	11	0	0	0	0	0
179	L+4	-5.66	1	1	3	8	74	8	3	1	1
178	L+3	-5.99	0	0	0	0	0	0	48	22	28
177	L+2	-6.01	28	22	48	0	0	0	0	0	0
176	L+1	-6.68	1	1	4	10	68	10	4	1	1
175	LUMO	-8.92	2	1	11	12	48	12	11	1	2
174	НОМО	-10.00	4	2	16	11	34	11	16	2	4
173	H-1	-10.88	1	0	4	2	7	23	53	2	8
172	Н-2	-10.88	8	2	53	23	7	2	4	0	1
171	Н-3	-11.00	7	2	13	4	44	4	15	2	9
170	H-4	-11.09	1	0	2	1	7	16	40	4	27
169	H-5	-11.10	28	5	42	17	5	1	1	0	1

4. NMR Information

Figure S12. ¹H NMR spectrum (400 MHz, CDCl₃) of 2.

Figure S14. ³¹P NMR spectrum (160 MHz, CDCl₃) of 2.

Figure S15. ¹H NMR spectrum (400 MHz, CDCl₃) of **3**.

Figure S16. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3**.

Figure S18. ¹H NMR spectrum (400 MHz, CDCl₃) of 4.

-79.92

³¹P NMR of 3

Figure S20. ³¹P NMR spectrum (160 MHz, CDCl₃) of 4.