Supporting Information

Enhanced kinetic stability of [Pd₂L₄]⁴⁺ cages through ligand substitution

Dan Preston,^a Samantha M. McNeill,^b James E. M. Lewis,^a Gregory. I. Giles,^b and James D. Crowley^{*a}

^a Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand. ^b Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin, New Zealand.

*jcrowley@chemistry.otago.ac.nz

Contents

1	Expe	erimental3				
	1.1 NMR spectral data, 4					
	1.2	NMR spectral data, 5	5			
	1.3	NMR spectral data, 1b	6			
	1.4	NMR spectral data, 6	7			
	1.5	NMR spectral data, 1c	8			
	1.6	NMR spectral data, tripy	9			
	1.7	NMR spectral data, 2A-tripy	10			
	1.8	NMR spectral data, 3A-tripy	11			
	1.9	NMR spectral data, [Pd ₂ (tripy) ₄](BF ₄) ₄	12			
	1.10	NMR spectral data, [Pd ₂ (2A-tripy) ₄](BF ₄) ₄	13			
	1.11	NMR spectral data, [Pd ₂ (3A-tripy) ₄](BF ₄) ₄	14			
	1.12 aminoj	Synthesis of <i>trans</i> -dibromo(1,3-diisopropylbenzimidazolin-2-ylidene)(2- pyridine)palladium(II)	15			
	1.13 aminoi	Synthesis of <i>trans</i> -dibromo(1,3-diisopropylbenzimidazolin-2-ylidene)(3- nyridine)palladium(II)	16			
	1 14	Synthesis of $[Pd_{-}(tripy)_{-}](NO_{-})$.	17			
2	Ren	resentative mass spectra				
2	Sele	10				
4	Stab	pility studies				
	4.1	Histidine				
	4.2	Cysteine	22			
	4.3	, Chloride	23			
5	X-ra	iy Data	25			
	5.1	[Pd ₂ (tripy-2A) ₄](BF ₄) ₄	25			
	5.2	Crystallographic data				
6	Refe	erences	29			

1 Experimental

Scheme S1. Synthesis of the tripyridyl ligands, tripy, 2A-tripy and 3A-tripy.

1.1 NMR spectral data, 1

Figure S1.2 ¹³C NMR spectrum (100 MHz, *d*₆-DMSO, 298 K) of **1**.

1.2 NMR spectral data, 2

S5

1.3 NMR spectral data, 3

1.4 NMR spectral data, 4

Figure S1.8 ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of 4.

1.5 NMR spectral data, 5

Figure S1.10 $^{\rm 13}{\rm C}$ NMR spectrum (125 MHz, CDCl₃, 298 K) of 5.

1.6 NMR spectral data, tripy

1.7 NMR spectral data, 2A-tripy

1.8 NMR spectral data, 3A-tripy

1.9 NMR spectral data, [Pd₂(tripy)₄](BF₄)₄

Figure S1.18 ¹³C NMR spectrum (125 MHz, CD₃CN, 298 K) of [Pd₂(tripy)₄](BF₄)₄.

1.10 NMR spectral data, [Pd₂(2A-tripy)₄](BF₄)₄

Figure S1.20 ¹³C NMR spectrum (125 MHz, CD₃CN, 298 K) of [Pd₂(2A-tripy)₄](BF₄)₄.

1.11 NMR spectral data, [Pd₂(3A-tripy)₄](BF₄)₄

1.12 Synthesis of *trans*-dibromo(1,3-diisopropylbenzimidazolin-2-ylidene)(2aminopyridine)palladium(II)

A solution of 2-aminopyridine (3.95 mg, 0.042 mmol) and dibromobis(benzimidazolin-2-ylidene)dipalladium(II) (20 mg, 0.021 mmol) in CDCl₃ (0.75 mL) was sonicated for 30 seconds. Vapour diffusion of diethyl ether into this solution gave a yellow semi-crystalline precipitate (15.1 mg, 0.026 mmol, 64%). ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.47 (1H, d, *J* = 7.0 Hz, H_e), 7.60 (2H, dd, *J* = 8.2 Hz, 3.2 Hz, H_b), 7.44 (1H, t, *J* = 8.2 Hz, H_g), 7.24 (2H, dd, *J* = 8.2 Hz, 3.2 Hz, H_a), 6.69 (1H, t, *J* = 5.9 Hz, H_f), 6.57 (1H, d, *J* = 8.3 Hz, H_h), 6.35 (2H, sept, *J* = 7.0 Hz, H_c), 5.56 (2H, br, H_{NH}), 1.83 (12 H, d, *J* = 7.0 Hz, H_d). ¹³C NMR (100 MHz, CDCl₃, 298 K) δ : 161.2 (C_{carbene}), 158.5, 150.0 (C_e), 138.8 (C_g), 133.6, 122.4 (C_a), 114.4 (C_f), 112.8 (C_b), 115.5 (C_h), 54.8 (C_c), 20.9 (C_d). HR ES-MS (CH₃OH) *m/z* = 483.0167 [M - Br]⁺ (calc. for C₁₈H₂₄Br₄Br₄Pd, 483.0215), 584.9237 [M + Na]⁺ (calc. for C₁₈H₂₄Br₂N₄NaPd, 584.9284). IR: v (cm⁻¹) 3419, 3326, 2977, 1623, 1410, 1364, 1306, 1141, 744. Anal. calcd. for C₁₈H₂₄Br₂N₄Pd: C, 38.42; H, 4.30; N, 9.96. Found: C, 38.69; H, 4.32; N, 9.94%.

Figure S1.24 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of trans-[Pd(NHC)(2A-py)](Br₂).

1.13 Synthesis of *trans*-dibromo(1,3-diisopropylbenzimidazolin-2-ylidene)(3aminopyridine)palladium(II)

A solution of 3-aminopyridine (10.4 mg, 0.042 mmol) and dibromobis(benzimidazolin-2-ylidene)dipalladium(II) (20 mg, 0.021 mmol) in CDCl₃ (0.75 mL) was sonicated for 30 seconds. Vapour diffusion of diethyl ether into this solution gave a yellow precipitate (16.0 mg, 0.028 mmol, 68%). ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.52 (1H, d, *J* = 2.4 Hz, H_h), 8.46 (1H, d, *J* = 5.1 Hz, H_e), 7.58 (2H, dd, *J* = 6.2 Hz 3.2 Hz, H_b), 7.21 (2H, dd, *J* = 6.1 Hz, *J* = 3.1 Hz, H_a), 7.07 (1H, dd, *J* = 8.6 Hz, 5.7 Hz, H_f), 7.00 (2H, d, *J* = 8.3 Hz, H_g), 6.33 (2H, sept, *J* = 7.0 Hz, H_c), 3.84 (2H, br, H_{NH}), 1.80 (12H, d, *J* = 6.9 Hz, H_d). ¹³C NMR (100 MHz, CDCl₃, 298 K) δ : 159.9 (C_{carbene}), 143.3, 142.7 (C_e), 139.9 (C_h), 133.6, 124.6 (C_f), 123.1 (C_g), 122.3 (C_a), 112.7 (C_b), 54.6 (C_c), 20.7 (C_d). HR ES-MS (CH₃OH) *m/z* = 401.0923 [M - HBr - Br]⁺ (calc. for C₁₈H₂₃N₄Pd, 401.0952). IR: v (cm⁻¹) 3419, 3326, 2977, 1623, 1481, 1410, 1364, 1307, 1141, 1089, 744. Anal. calcd. for C₁₈H₂₄Br₂N₄Pd: C, 38.42; H, 4.30; N, 9.96%; found: C, 38.42; H, 4.37; N, 9.91%.

1.14 Synthesis of [Pd₂(tripy)₄](NO₃)₄

A solution of **tripy** (40 mg, 0.13 mmol) and Pd(NO₃)₂·2H₂O (17.9 mg, 0.07 mmol) in d_6 -DMSO (1 mL) was sonicated for five minutes. Addition of ethyl acetate (20 mL) resulted in precipitation of the product. The precipitate was collected by filtration, and washed with ethyl acetate (15 mL) and diethyl ether (15 mL) to give a tan solid (40 mg, 0.023 mmol, 73%). ¹H NMR (500 MHz, d_6 -DMSO, 298 K) δ : 9.88 (8H, s, H_c), 9.41 (1H, d, J = 5.8 Hz, H_f), 8.34 (8H, dd, J = 8.0 Hz, 1.2 Hz, H_d), 7.85 (8H, t, J = 6.8 Hz, H_e), 7.69 (8H, s, H_b), 4.58 (8H, s, H_a). ¹³C NMR (125 MHz, d_6 -DMSO, 298 K) δ : 153.8 (C_c), 153.6, 151.0 (C_f), 143.3 (C_d), 141.7, 127.3 (C_e), 125.6 (C_b), 121.7, 93.6, 83.0, 60.7 (C_a). ESI-MS (DMSO/CH₃CN) m/z = 364.60 [M - 4(NO₃)]⁴⁺ (calc. for C₈₀H₅₂N₁₂O₄Pd₂, 364.60), 364.0759 [Pd(**tripy**)₂]²⁺ (calc. for C₄₀H₂₆N₆O₂Pd, 364.0759). IR: v (cm⁻¹) 3061, 1592, 1546, 1340. Anal. calcd. for C₈₀H₅₂N₁₆O₁₆Pd₂·3H₂O: C, 54.59; H, 3.32; N, 12.73%. Found: C, 54.37; H, 3.37; N, 12.50%.

Figure S1.28 ¹³C NMR spectrum (125 MHz, CD₃CN, 298 K) of [Pd₂(tripy)₄](NO₃)₄.

2 Representative mass spectra

Figure S2.1 HR ES mass spectrum (DMSO/CH₃CN) of [Pd₂(3A-tripy)₄](BF₄)₄.

Figure S2.2 Partial HR ES mass spectra for a) [Pd₂(tripy)₄](BF₄)₄ (in CH₃CN), b) [Pd₂(tripy)₄](NO₃)₄ (in DMSO/CH₃CN) and c) [Pd₂(2A-tripy)₄](BF₄)₄ (in DMSO/CH₃CN), with observed spectra above and calculated middle and/or below.

3 Selected NMR spectral data

Figure S3.2 Partial ¹H NMR spectra (298K, 500 MHz, d_6 -DMSO) of a) tripy and $[Pd_2(tripy)_4](BF_4)_4$, b) 2A-tripy and $Pd_2(2A-tripy)_4](BF_4)_4$, and c) 3A-tripy and $[Pd_2(3A-tripy)_4](BF_4)_4$.

		Compound	Diffusion coefficient (D) x 10 ⁻¹⁰ m ² s ⁻¹		
		Compound	Ligand(s)	Ca	ge
		tripy	2.34	1.(03
		2A-tripy	1.73	0.8	89
		3A-tripy	1.90	0.9	97
a)	с 	f		k	b,e
b)	Λ	M		~	M
	9.5	9.0	8.5 δ(ppm)	8.0	7.5

 Table S3.1 ¹H DOSY NMR-derived diffusion coefficients (D) for compounds (500 MHz, d₆-DMSO, 298 K).

Figure S3.3 Partial ¹H NMR stacked spectra (400 MHz, D₂O, 298 K) of a) $[Pd_2(tripy)_4](NO_3)_4$ and b) $[Pd_2(tripy)_4](NO_3)_4 + 10$ equivalents cisplatin.

Figure S3.4 Partial ¹H NMR stacked spectra (400 MHz, d_6 -DMSO, 298 K) of a) $[Pd_2(tripy)_4](BF_4)_4$ and b) $[Pd_2(tripy)_4](BF_4)_4 + cisplatin, c)$ tripy, d) cisplatin.

4 Stability studies

All time course studies were carried out in a 3:2 d_{6} -DMSO/D₂O solvent mixture on a Varian 500 MHz AR spectrometer at 298 K. The concentration of the $[Pd_2L_4]^{4+}$ architectures was in all cases 3 mM. Testing was carried out against histidine, cysteine and tetramethylammonium chloride. Four equivalents of histidine and cysteine or eight equivalents of chloride were used. A reference sample of each dipalladium architecture at 3 mM concentration without nucleophile was used for time zero. The amount of complex still present over time in comparison to at time zero was calculated through comparison of the integration of the peak found at highest chemical shift (H_c) to the reference peak of trimethylsilyl propanoic acid, with additional comparison to the integration of peak belonging to the same proton in the free ligand.

4.1 Histidine

Figure S4.1 Time course partial ¹H NMR stacked plot of $[Pd_2(tripy)_4](BF_4)_4$ against 4 equivalents histidine (500 MHz, 3:2 d_6 -DMSO/D₂O, 298 K). Colour coding: cage, free ligand, histidine.

Figure S4.2 Time course partial ¹H NMR stacked plot of $[Pd_2(2A-tripy)_4](BF_4)_4$ against 4 equivalents histidine (500 MHz, 3:2 d_6 -DMSO/D₂O, 298 K). Colour coding: cage, free ligand, free histidine, bis(histidine)palladium(II) complex.

Figure S4.3 Time course partial ¹H-NMR stacked plot of $[Pd_2(3A-tripy)_4](BF_4)_4$ against 4 equivalents histidine (500 MHz, 3:2 d_6 -DMSO/D₂O, 298 K). Colour coding: cage, free ligand, free histidine, bis(histidine)palladium(II) complex.

•

Figure S4.4 Time course partial ¹H-NMR stacked plot of $[Pd_2(tripy)_4](BF_4)_4$ against 4 equivalents cysteine (500 MHz, 3:2 d_6 -DMSO/D₂O, 298 K). Colour coding: cage, free ligand.

Figure S4.5 Time course partial ¹H-NMR stacked plot of $[Pd_2(2A-tripy)_4](BF_4)_4$ against 4 equivalents cysteine (500 MHz, 3:2 d_6 -DMSO/D₂O, 298 K). Colour coding: cage, free ligand.

Figure S4.6 Time course partial ¹H-NMR stacked plot of $[Pd_2(3A-tripy)_4](BF_4)_4$ against 4 equivalents cysteine (500 MHz, 3:2 d_6 -DMSO/D₂O, 298 K). Colour coding: cage, free ligand.

4.3 Chloride

Figure S4.7 Time course partial ¹H-NMR stacked plot of $[Pd_2(tripy)_4](BF_4)_4$ against 8 equivalents tetramethylammonium chloride (500 MHz, 3:2 d_6 -DMSO/D₂O, 298 K). Colour coding: cage, free ligand.

Figure S4.8 Time course partial ¹H-NMR stacked plot of $[Pd_2(2A-tripy)_4](BF_4)_4$ against 8 equivalents tetramethylammonium chloride (500 MHz, 3:2 d_6 -DMSO/D₂O, 298 K). Colour coding: cage, free ligand.

Figure S4.9 Time course partial ¹H-NMR stacked plot of [Pd₂(**3A-tripy**)₄](BF₄)₄ against 8 equivalents tetramethylammonium chloride (500 MHz, 3:2 *d*₆-DMSO/D₂O, 298 K). Colour coding: cage, free ligand.

5 X-ray Data

5.1 [Pd₂(tripy-2A)₄](BF₄)₄

Figure S5.1 Ball and stick representation of $[Pd_2(2A-tripy)_4](BF_4)_4$ showing the filling of the cavity by the methylene alcohol substituents (shown in spacefilling view in yellow, green, blue and pink) from the four neighbouring cages in the lattice, shown from a) above and b) a more tilted view. The proposed hydrogen bonding network within the cavity is shown in c) Only the central pyridyl ring, the adjacent alkyne carbon, and the methylene alcohol are shown of the interpenetrating cages. An ellipsoid plot (no hydrogen atoms or counterions, ellipsoids 50% probability) in d). The extended interpenetrating network is shown in e) (tube view) and f) (spacefilling view). Due to poor data, hydrogen bonding distances are not included.

Platon squeeze void number	Platon squeeze void average x	Platon squeeze void average y	Platon squeeze void average z	Platon squeeze void volume	Platon squeeze void count electrons	Platon squeeze details
1	0.000	0.000	0.077	18	10	H₂O
2	0.000	0.500	0.253	127	43	BF_4
3	0.000	0.000	0.500	246	110	$2 \times BF_4$ CH ₃ CN
4	0.000	0.500	0.747	127	43	BF_4
5	0.000	0.000	0.923	18	10	H ₂ O
6	0.500	0.000	0.253	127	43	BF_4
7	0.500	0.000	0.747	127	43	BF_4
8	0.500	0.500	0.000	249	136	$2 \times BF_4$ $2 \times CH_3CN$ H_2O
9	0.500	0.500	0.432	23	11	H ₂ O
10	0.500	0.500	0.568	23	11	H ₂ O

5.2 Cavity comparison of [Pd₂(2A-tripy)]⁴⁺ and [Pd₂(tripy)₄]⁴⁺

Figure 5.2 Tube depictions of the crystal structures of $[Pd_2(2A-tripy)_4]^{4+}$ and $[Pd_2(tripy)_4]^{4+[1]}$ showing a) swivelling of the coordinating pyridine rings relative to the principal rotation axis (θ), and b) twisting of the central pyridine ring out of the coordination plane (ϕ). Colours: carbon grey, nitrogen blue, oxygen red, palladium magenta. Counterions and/or hydrogen atoms and solvent molecules omitted for clarity.

Figure 5.3 Ball and stick representation showing partial $[Pd_2(tripy)_4]^{4+}$ cage crystal structure with two cisplatin molecules encapsulated,^[1] with interactions as dotted lines. Interactions: a) chloride----hydrogen, b) amino-----pyridine, c) inter-cisplatin amino----chloride, and d) inter-cisplatin platinum(II)-----platinum(II). Colours: carbon grey, nitrogen blue, oxygen red, palladium magenta. Note that these binding interactions have previously been seen in solid state structures of analogous systems.^[2]

5.3 Crystallographic data

Identification code	[Pd ₂ (2A-tripy) ₄](BF ₄) ₄ /dp549 CIF #: 1439952				
Empirical formula	$C_{80}H_{52}N_{16}O_4Pd_2$				
Formula weight	$(C_{80}H_{60}B_4F_{16}N_{20}O_4Pd_2\cdot C_3H_{9.5}N_{1.5}O_{2.5})^a$ 1514.8 (2032.14) ^a				
Temperature	100(1) K				
Wavelength	1.54184 Å				
Crystal system	Tetragonal				
Space group	P4/m				
Unit cell dimensions	$\alpha = 11.3213(11) \text{ Å} \qquad \alpha = 90^{\circ}$				
	b = 11.3213(11) Å β = 90°				
	c = 34.953(4) Å γ = 90°				
Volume	4480.0(10) Å ³				
Z	2				
Density (calculated)	1.122 Mg/m ³ (1.506) ^a				
Absorption coefficient	3.643 mm ⁻¹ (4.095) ^a				
F(000)	1536 (2052) ^a				
Crystal size	0.2028 x 0.1121 x 0.0485 mm ³				
Theta range for data collection	3.794 to 73.702°				
Index ranges	-13<=h<=14, -13<=k<=12, -39<=l<=43				
Reflections collected	34358				
Independent reflections	4572 [R(_{int}) = 0.1650]				
Completeness	100.0% to theta = 67.684°				
Absorption correction	Gaussian				
Max. and min. transmission	1.00000 and 0.56661				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	4572 / 97 / 237				
Goodness-of-fit on F2	1.179				
Final R indices [I>2sigma(I)]	$R_1 = 0.1445$, $wR_2 = 0.4487$				
R indices (all data)	$R_1 = 0.2249, wR_2 = 0.4447$				
Largest diff. peak and hole	0.776 and -0.678 e.Å ⁻³				
Absolute structure parameter	-				

^{*a*} alternative parameters, derived from empirical formula including SQUEEZED solvent.

6 References

- [1] A. Schmidt, V. Molano, M. Hollering, A. Poethig, A. Casini, F. E. Kuehn, *Chem. Eur. J.* **2016**, *22*, 2253-2256.
- [2] aJ. E. M. Lewis, A. B. S. Elliott, C. J. McAdam, K. C. Gordon, J. D. Crowley, *Chem. Sci.* 2014, *5*, 1833-1843; bJ. E. M. Lewis, C. J. McAdam, M. G. Gardiner, J. D. Crowley, *Chem. Commun.* 2013, *49*, 3398-3400.