Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Table of Contents

- 1. The PXRD patterns for Cd-MOF and Cd-MOF immersing in different solvents (Fig. S1).
- 2. The TGA curve of Cd-MOF (Fig. S2).
- 3. The solid state emission spectra of Cd-MOF and the free ligands (Fig. S3).
- 4. Emission spectra of Cd-MOF in different solvents ($\lambda_{ex} = 318$ nm) (Fig. S4).
- 5. Emission spectra of Cd-MOF dispersed in DMF with different concentrations of NB ($\lambda_{ex} = 318 \text{ nm}$) (Fig. S5).
- 6. Emission spectra of Cd-MOF dispersed in DMF containing 4-nitrotoluene (A), 4-chloronitrobenzene (B), 4-nitroaniline (C) and 4-nitrophenol (D) ($\lambda_{ex} = 318$ nm) (Fig. S6).
- 7. The excitation spectra of Tb(III)@Cd-MOF/methanol (a), Tb(III)@Cd-MOF/ aqueous (b), $10^{-2}/3 \times 10^{-2}$ mol/L Tb(III)/Eu(III)@Cd-MOF/methanol (c) (λ_{em} =545 nm) (Fig. S7).
- 8. Emission decay profiles of ${}^{5}D_{4}$ Tb(III) in Tb(III)@Cd-MOF/methanol (a), Tb(III)@Cd-MOF/aqueous (b), $10^{-2}/10^{-2}$ mol/L Tb(III)/Eu(III)@Cd-MOF/methanol (c), and ${}^{5}D_{0}$ Eu(III) in $10^{-2}/10^{-2}$ mol/L Tb(III)/Eu(III)@Cd-MOF/methanol (d) (Fig. S8).
- 9. Emission spectra of Tb(III)@Cd-MOF/aqueous with different concentrations of Tb(III) 1×10^{-2} (A), 1×10^{-3} (B), 1×10^{-4} (C), and 1×10^{-5} (D) mol/l, 1×10^{-2} Tb(III)/aqueous (E) and Cd-MOF/aqueous (F) ($\lambda_{ex} = 366$ nm). Inset, image under 365 nm UV-radiation for Tb(III)@Cd-MOF/aqueous (Fig. S9).
- 10. Emission spectra of Cd-MOF immersed in methanol solution containing rare earth metal ions (La(III), Pr(III), Nd(III), Er(III) and Yb(III), 10^{-2} mol/L) ($\lambda_{ex} = 318$ nm) (Fig. S10).
- 11. Emission spectrum of $10^{-2}/3 \times 10^{-2}$ mol/L Tb(III)/Eu(III)@Cd-MOF/methanol (λ_{ex} =366 nm) (Fig. S11).
- 12. The luminescence intensity of four recyclable experiments of sensing nitrobenzene (A) and Tb(III) ion (B) in methanol (Fig. S12).
- 13. Crystal data and structure refinement for Cd-MOF (Table S1).
- 14. Selected bond lengths [Å] and angles [^o] for Cd-MOF (Table S2).

Fig. S1 PXRD patterns of Cd-MOF and Cd-MOF immersing in different solvents.

Fig. S2 The TGA curve of Cd-MOF.

Fig. S3 The solid state emission spectra of Cd-MOF and the free ligands.

Fig. S4 Emission spectra of Cd-MOF in different solvents ($\lambda_{ex} = 318$ nm).

Fig. S5 Emission spectra of Cd-MOF dispersed in DMF with different concentrations of NB ($\lambda_{ex} = 318$ nm).

Fig. S6 Emission spectra of Cd-MOF dispersed in DMF containing 4-nitrotoluene (A), 4-chloronitrobenzene (B), 4-nitroaniline (C) and 4-nitrophenol (D) ($\lambda_{ex} = 318$ nm).

Fig. S7 The excitation spectra of Tb(III)@Cd-MOF/methanol (a), Tb(III)@Cd-MOF/ aqueous (b), $10^{-2}/3 \times 10^{-2}$ mol/L Tb(III)/Eu(III)@Cd-MOF/methanol (c) (λ_{em} =545 nm).

Fig. S8 Emission decay profiles of ${}^{5}D_{4}$ Tb(III) in Tb(III)@Cd-MOF/methanol (a), Tb(III)@Cd-MOF/ aqueous (b), $10^{-2}/10^{-2}$ mol/L Tb(III)/Eu(III)@Cd-MOF/methanol (c), and ${}^{5}D_{0}$ Eu(III) in $10^{-2}/10^{-2}$ mol/L Tb(III)/Eu(III)@Cd-MOF/methanol (d).

Fig. S9 Emission spectra of Tb(III)@Cd-MOF/aqueous with different concentrations of Tb(III) 1×10^{-2} (A), 1×10^{-3} (B), 1×10^{-4} (C), and 1×10^{-5} (D) mol/l, 1×10^{-2} Tb(III)/aqueous (E) and Cd-MOF/aqueous (F) (λ_{ex} =366 nm). Inset, image under 365 nm UV-radiation for Tb(III)@Cd-MOF/aqueous.

Fig. S10 Emission spectra of Cd-MOF immersed in methanol solution containing rare earth metal ions (La(III), Pr(III), Nd(III), Er(III) and Yb(III), 10^{-2} mol/L) ($\lambda_{ex} = 318$ nm).

Fig. S11 Emission spectrum of $10^{-2}/3 \times 10^{-2}$ mol/L Tb(III)/Eu(III)@Cd-MOF/methanol ($\lambda_{ex} = 366$ nm).

Fig. S12 The luminescence intensity of four recyclable experiments of sensing nitrobenzene (A) and Tb(III) ion (B) in methanol.

-	
Complex	Cd-MOF
Empirical formula	$C_{36}H_{28}Cd_2N_6O_8$
Formula weight	897.44
Crystal system	hexagonal
Space group	P61
a / Å	11.823(2)
<i>b /</i> Å	11.823(2)
<i>c /</i> Å	41.384(8)
γ / (°)	120
Volume / Å ³	5009.5(16)
Ζ	6
Calculated density / mg· m ⁻³	1.785
Absorption coefficient / mm ⁻¹	1.338
F(000)	2676
Crystal size / mm	$0.40\times0.20\times0.20$
θ Range for data collection / (°)	1.99-27.52
	-15<=h<=6
Limiting indices	-14<=k<=15
	-46<=l<=51
	19935/7269
Reflections collected / unique	[R(int)=0.0514]
Data / restraints / parameters	7269/175/524
Goodness-of-fit on F^2	0.984
R ₁ [<i>I</i> > 2sigma(<i>I</i>)]	0.0386
wR ₂ [<i>I</i> > 2sigma(<i>I</i>)]	0.0531
R ₁ [all data]	0.057
wR ₂ [all data]	0.0578
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.462 and -0.393

Table S1 Crystal data and structure refinement for Cd-MOF

Table S2 Selected	bond lengths	[Å] and angles	[°] for Cd-MOF

Table S2 Selected bond lengths [Å] and angles [°] for Cd-MOF					
Cd-MOF					
Cd(1)-O(1)	2.297(3)	Cd(1)-O(5)	2.328(3)		
Cd(1)-O(3)	2.294(3)	Cd(1)-O(7)	2.371(3)		
Cd(1)-N(6)#1	2.264(4)	Cd(1)-N(1)	2.258(4)		
Cd(2)-O(3)#2	2.239(3)	Cd(2)-O(7)	2.413(4)		
Cd(2)-O(6)#2	2.328(4)	Cd(2)-O(8)	2.390(4)		
Cd(2)-O(1)	2.276(3)	Cd(2)-O(5)#2	2.527(3)		
0(3)-Cd(1)-O(1)	116.52(10)	0(3)-Cd(1)-O(5)	76.91(11)		

O(1)-Cd(1)-O(5)	166.04(11)	0(3)-Cd(1)-0(7)	164.61(12)
0(1)-Cd(1)-0(7)	75.09(11)	0(5)-Cd(1)-0(7)	92.45(10)
N(1)-Cd(1)-O(3)	100.54(12)	N(6)#1-Cd(1)-O(3)	84.07(13)
N(1)-Cd(1)-O(1)	87.93(13)	N(6)#1-Cd(1)-O(1)	92.92(13)
N(1)-Cd(1)-O(5)	85.66(13)	N(6)#1-Cd(1)-O(5)	92.28(14)
N(1)-Cd(1)-O(7)	89.54(13)	N(6)#1-Cd(1)-O(7)	85.30(14)
N(1)-Cd(1)-N(6)#1	174.36(15)	0(8)-Cd(2)-0(7)	54.52(12)
0(3)#2-Cd(2)-0(5)#2	73.91(11)	0(1)-Cd(2)-O(5)#2	154.12(11)
0(6)#2-Cd(2)-0(5)#2	53.74(10)	0(8)-Cd(2)-0(5)#2	82.68(11)
O(7)-Cd(2)-O(5)#2	94.22(10)	0(6)#2-Cd(2)-0(7)	89.28(13)
0(3)#2-Cd(2)-0(1)	128.68(10)	0(3)#2-Cd(2)-0(6)#2	109.81(12)
0(1)-Cd(2)-0(6)#2	102.04(12)	0(3)#2-Cd(2)-0(8)	88.11(11)
0(1)-Cd(2)-O(8)	107.82(12)	0(6)#2-Cd(2)-0(8)	122.13(12)
0(3)#2-Cd(2)-0(7)	142.28(12)	0(1)-Cd(2)-0(7)	74.64(11)

Symmetry transformations used to generate equivalent atoms: #1 y-1,-x+y,z-1/6; #2

y,-x+y,z-1/6.