Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

esi_phosphorous_2_03.02.2016.docx

Electronic Supporting Information

for

Clathrochelates meet phosphorus. New thio- and phosphorylation reactions of an iron(II) dichloroclathrochelate precursor and preparation of its first phosphorus(III)-containing macrobicyclic derivative

Oleg I. Artyushin,^a Ekaterina V. Matveeva,^a Anna V. Vologzhanina,^a and Yan Z. Voloshin^{a,b,**}

 ^a Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences, 119991, Moscow, Russia
 ^b Gubkin Russian State University of Oil and Gas, 119991, Moscow, Russia

^{**} Corresponding author.

General considerations

The reagents used, $FeCl_2 \cdot 4H_2O$, α -benzildioxime (denoted as H_2Bd), $BF_3 \cdot O(C_2H_5)_2$, diphenylphosphine oxide, triethylbenzylammonium chloride, diethyl thiophosphite, sorbents, acids, bases, and organic solvents were obtained commercially (SAF). The dichloroglyoxime (denoted as Cl_2GmH_2) was prepared by chlorination of glyoxime as described in Ref. ^{S1}. The dichloroclathrochelate precursor FeBd₂(Cl₂Gm)(BF)₂ was obtained as described elsewhere.^{3a}

Analytical data (C, H, N contents) were obtained with a Carlo Erba model 1106 microanalyzer.

MALDI-TOF mass spectra were recorded in both the positive and the negative spectral regions using a MALDI-TOF-MS Bruker Autoflex mass spectrometer in reflecto-mol mode. The ionization was induced by UV-laser with wavelength 336 nm. The sample was applied to a nickel plate, 2,5-dihydroxybenzoic acid was used as a matrix. The accuracy of measurements was 0.1%.

IR spectra of the solid sample (KBr tablets) in the range $400 - 4000 \text{ cm}^{-1}$ were recorded with a Nicolet Magna-IR 750 FTIR-spectrophotometer.

UV-vis spectra of the solutions in dichloromethane were recorded in the range 230 – 800 nm with a Lambda 9 Perkin Elmer spectrophotometer. The individual Gaussian components of these spectra were calculated using the SPECTRA program.

 ^{1}H , $^{11}B{^{1}H}$, $^{19}F{^{1}H}$, $^{13}C{^{1}H}$ and $^{31}P{^{1}H}$ NMR spectra of the complexes obtained were recorded from their CD_2Cl_2 solutions using a Bruker Avance 400 spectrometer.

Supporting Information References

S1. G.Ponzio, F.Baldrocco, Gazz. Chim. Ital., 1930, 60, 415-420.

Table S1 Maxima { λ_{max} , nm ($\epsilon \cdot 10^{-3}$, mol⁻¹ l cm⁻¹)} of the UV–vis spectra for the mono- and diphosphorylated iron(II) monoand bis-clathrochelates and their dichloroclathrochelate precursor

Complex	$\lambda_{1}\left(\epsilon_{1} ight)$	$\lambda_{2}\left(\epsilon_{2} ight)$	$\lambda_3(\epsilon_3)$	$\lambda_4 (\epsilon_4)$	$\lambda_{5}(\epsilon_{5})$	$\lambda_{6}(\epsilon_{6})$	$\lambda_{7}(\epsilon_{7})$	$\lambda_{8}(\epsilon_{8})$	$\lambda_{9}(\epsilon_{9})$
FeBd ₂ (Cl ₂ Gm)(BF) ₂ ^{3a}	264 (14)	285 (7.7)		311 (3.6)	399 (3.2)	448 (3.5)	470 (19)		
$FeBd_2(((C_6H_5)_2P(O))ClGm)(BF)_2$	266(20)	298(6.9)		336(2.9)	391(3.1)	426(3.9)	452(8.8)	479(12)	507(5.9)
$FeBd_2(((C_2H_5O)_2P(S))ClGm)(BF)_2$	268(23)	287(4.2)	303(6.1)	318(5.0)	378(3.6)	432(3.9)	467(19)	495(11)	
$FeBd_2(((C_2H_5O)_2P(S))_2Gm)(BF)_2$	271(13)	291(13)				433(6.4)	468(20)		506(5.6)
FeBd ₂ (((C ₆ H ₅) ₂ P(S))ClGm)(BF) ₂ ⁻¹	262(33)	299(11)		355(4.0)	412(4.4)	441(7.7)	467(19)	499(15)	514(2.9)
FeBd ₂ (((C ₆ H ₅) ₂ P(S))(<i>n</i> -C ₄ H ₉ NH)Gm)(BF) ₂ ⁻¹	256(23)	283(15)	300(11)	356(3.4)	414(3.9)		465(8.2)	496(20)	542(6.6)
$FeBd_2(((C_6H_5)_2P(S))(H_2N(CH_2)_5NH)Gm)(BF)_2$ ¹	256(24)	289(17)		320(5.1)	378(3.4)	429(3.6)	468(6.3)	496(16)	533(6.9)
FeBd ₂ (((C ₆ H ₅) ₂ P(S))(2-NHCH ₂ Py)Gm)(BF) ₂ [¹	256(18)	284(16)		320(3.3)	407(3.1)		469(5.0)	496(12)	533(4.3)
$FeBd_2(((C_6H_5)_2P(S))(2-NHCH_2CH_2Py)Gm)(BF)_2$ ¹	250(14)	267(3.6)	277(20)	299(4.8)	406(2.7)			490(20)	543(4.6)
$FeBd_2(((C_6H_5)_2P(S))(CH_3SCH_2CH_2NCH_3)Gm)(BF)_2$	255(28)	267(0.9)	289(17)	290(2.4)	341(4.2)	394(1.0)	482(10)	489(13)	522(2.2)
$[FeBd_2(((C_6H_5)_2P(S))Gm)(BF)_2]_2(NH(CH_2)_5NH)^{-1}$	260(56)	288(30)	307(16)	356(5.9)	415(8.1)		468(15)	497(39)	548(10)

esi_phosphorous_2_03.02.2016.docx

Table S2. Crystallographic data and refinement parameters for the complexes $\text{FeBd}_2(((C_6H_5)_2P(O))ClGm)(BF)_2 \cdot 0.5 \text{ O}(C_2H_5)_2$, $\text{FeBd}_2(((C_2H_5O)_2P(S))_2Gm)(BF)_2 \cdot 1.75 \text{ C}_6H_{14}$ and $\text{FeBd}_2(((C_6H_5)_2P)ClGm)(BF)_2 \cdot 3CH_2Cl_2$

	FeBd ₂ (((C_6H_5) ₂ P(O))ClGm)(BF) ₂ · 0.5 (C_2H_5) ₂ O	$\frac{\text{FeBd}_2(((C_2H_5O)_2P(S)))ClGm)(BF)_2}{2 \text{ CH}_2Cl_2}$	FeBd ₂ (((C ₂ H ₅ O) ₂ P(S)) ₂ Gm)(BF) ₂ · 1.75 C ₆ H ₁₄	$\frac{\text{FeBd}_2(((C_6H_5)_2P)ClGm)(BF)_2}{3CH_2Cl_2}$
Empirical formula	$C_{44}H_{35}B_2ClF_2FeN_6O_{7.5}P$	$C_{36}H_{34}B_2Cl_5F_2FeN_6O_8PS$	$C_{48.5}H_{64.5}B_2F_2FeN_6O_{10}P_2S_2$	$C_{45}H_{36}B_2Cl_7F_2FeN_6O_6P$
Fw	949.67	1034.44	1133.09	1151.39
Color, habit	brownish-red, prism	pale-brown, plate	red, prism	red, plate
Crystal size (mm ³)	0.35×0.32×0.21	$0.28 \times 0.15 \times 0.04$	$0.32 \times 0.29 \times 0.09$	$0.26 \times 0.12 \times 0.04$
Temperature, K	100.0(2)	100.0(2)	120.0(2)	120.0(2)
<i>a</i> (Å)	12.320(1)	15.441 (2)	38.597(2)	16.4722(3)
<i>b</i> (Å)	13.773(2)	16.407 (2)	38.597 (2)	12.3493(2)
<i>c</i> (Å)	13.832(2)	17.367 (2)	23.994 (2)	30.3441(6)
	116.261(3)	90	90	90
β (°)	91.671 (3)	90	90	126.470(1)
	95.321(3)	90	120	90
$V(\text{\AA}^3)$	2089.3(4)	4399.8 (10)	30955 (3)	4963.81(16)
Ζ	2	4	18	4
Crystal system	triclinic	orthorhombic	hexagonal	monoclinic
Space group	РĪ	P 2 ₁ 2 ₁ 2 ₁	R 3	P 2 ₁ /c
d_{calc} (g·cm ⁻³)	1.510	1.556	1.094	1.541
μ (mm ⁻¹)	0.534	0.792	3.213	6.734
Independent reflections	11049 (0.030)	8621 (0.111)	12025 (0.050)	8717 (0.1501)
(R _{int})				
Obs.refl./restraints/	8961 / 0 / 580	5649 / 17 / 483	9865 / 3 / 605	6464 / 0 / 631
parameters				
<i>R</i> , ^a % $[I > 2\sigma(I)]$	0.043	0.094	0.064	0.041
R_w , ^b %	0.094	0.193	0.182	0.092
GOF ^c	1.05	1.05	1.10	1.00
<i>F</i> (000)	974	2104	10683	2336

 ${}^{a}R = \Sigma \left[\left| F_{o} \right| - \left| F_{c} \right| \right| / \Sigma \left| F_{o} \right| \right] {}^{b}R_{w} = \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma (w(F_{o}^{2})) \right]^{1/2} \cdot \text{GOF} = \left[\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{\text{obs}} - N_{\text{param}}) \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{o}^{2} - F_{c}^{2})^{2} / (N_{o}^{2} - F_{c}^{2})^{2} / (N_{o}^{2} - F_{c}^{2} - F_{c}^{2})^{2} \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2} - F_{c}^{2})^{2} / (N_{o}^{2} - F_{c}^{2})^{2} / (N_{o}^{2} - F_{c}^{2} - F_{c}^{2})^{2} \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2} - F_{c}^{2})^{2} / (N_{o}^{2} - F_{c}^{2} - F_{c}^{2})^{2} \right]^{1/2} \cdot \left[\Sigma (w(F_{o}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2} - F_{$