Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

ESI to accompany:

Positional isomerism makes a difference: phosphonic acid anchoring ligands with thienyl spacers in copper(I)-based dye-sensitized solar cells

Y. Maximilian Klein,^a Markus Willgert,^a Alessandro Prescimone,^a Edwin C. Constable,^a Catherine E. Housecroft*^a

^aDepartment of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland; email: catherine.housecroft@unibas.ch

Synthetic details of precursors:

(1*E*,5*E*)-1,6-Bis(5-bromothiophen-2-yl)hexa-1,5-diene-3,4-dione. 2,3-Butanedione (3.68 g, 42.1 mmol), 5-bromo-2-thiophenecarboxaldehyde (16.1 g, 84.2 mmol) and piperidine (0.72 g, 8.4 mmol) were dissolved in MeOH (200 mL) and the reaction mixture was heated at reflux for 2h. A precipitate started to form after 30 min. The reaction mixture was cooled at –19 °C (refrigerator) overnight. The resulting precipitate was removed by filtration, and washed with cold MeOH (2 × 10 mL). The product was isolated as a brown powder (3.80 g, 8.79 mmol, 20.9%). Decomp. >155 °C. 1 H NMR (500 MHz, CD₂Cl₂) δ /ppm 7.84 (d, J = 15.8, 2H, H^a), 7.16 (overlapping d, J = 15.7 Hz and J = 3.9 Hz, 4H, H^{b+B3}), 7.08 (d, J = 3.9 Hz, 2H, H^{B4}). 13 C NMR (126 MHz, CD₂Cl₂) δ /ppm 187.5 (C^{C=0}), 141.8 (C^{B2}), 138.7 (C^a), 133.5 (C^{B3}), 131.6 (C^{B4}), 118.5 (C^{B5}), 118.3 (C^b).

(1*E*,5*E*)-1,6-Bis(4-bromothiophen-2-yl)hexa-1,5-diene-3,4-dione. The method was as for (1*E*,5*E*)-1,6-Bis(5-bromothiophen-2-yl)hexa-1,5-diene-3,4-dione but starting with 2,3-butanedione (2.37 g, 27.5 mmol), 4-bromothiophene-2-carboxaldehyde (10.5 g, 55.0 mmol) and piperidine (0.47 g, 5.5 mmol) in MeOH (150 mL). The product was isolated as a yellow powder (1.60 g, 3.7 mmol, 13.5%). Decomp. >208 °C. 1 H NMR (500 MHz, CD₂Cl₂) δ /ppm 7.87 (d, *J* = 15.8 Hz, 2H, H^a), 7.37 (m, 2H, H^{B5}), 7.32 (m, 2H, H^{B3}), 7.29 (d, *J* = 15.8 Hz, 2H, H^b). 13 C NMR (126 MHz, CD₂Cl₂) δ /ppm 187.2 (C^{C=0}), 141.0 (C^{B2}), 138.4 (C^a), 134.6 (C^{B3}), 127.3 (C^{B5}), 119.1 (C^b), 111.7 (C^{B4}).

4,4'-Bis(5-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine.

(1E,5E)-1,6-Bis(5-bromothiophen-2-yl)hexa-1,5-diene-3,4-dione (2.00 g, 4.63 mmol), 1-(2-oxopropyl)pyridin-1-ium chloride (1.99 g, 11.6 mmol) and NH₄OAc (5.00 g, 64.8 mmol) were dissolved in EtOH (100 mL) and the reaction mixture was heated at reflux for 4h. The reaction mixture was concentrated by solvent removal in vacuo and cooled at -19 °C (refrigerator) until a preciptate formed. The precipitate was removed by filtration and was washed with cold MeOH (2 × 15 mL). 4,4'-Bis(5-

bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine was isolated as an off-white powder (0.91 g, 1.8 mmol, 39%). M.p. 233 °C. ¹H NMR (500 MHz, CDCl₃) δ /ppm 8.35 (d, J = 1.6 Hz, 2H, H^{A3}), 7.37 (d, J = 3.9 Hz, 2H, H^{B3}), 7.26 (m, 2H, H^{A5}), 7.10 (d, J = 3.9 Hz, 2H, H^{B4}), 2.67 (s, 6H, H^{Me}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ /ppm 159.0 (C^{A6}), 156.5 (C^{A2}), 143.4 (C^{A4/B2}), 141.8 (C^{A4/B2}), 131.3 (C^{B4}), 125.8 (C^{B3}), 119.2 (C^{A5}), 114.6 (C^{A3}), 114.1 (C^{B5}), 24.8 (C^{Me}). ESI MS m/z 506.7 [M+H]+ (calc. 506.9).

4,4'-Bis(4-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine. The method was as for 4,4'-bis(5-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine, but starting with (1*E*,5*E*)-1,6-bis(4-bromothiophen-2-yl)hexa-1,5-diene-3,4-dione (0.99 g, 2.29 mmol), 1-(2-oxopropyl)pyridin-1-ium chloride (0.98 g, 5.73 mmol) and NH₄OAc (2.65 g, 34.4 mmol) in EtOH (70 mL). 4,4'-Bis(4-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine was isolated as an off-white powder (0.24 g, 0.47 mmol, 21%). M.p. 228 °C. ¹H NMR (500 MHz, CDCl₃) δ/ppm 8.40 (d, *J* = 1.6 Hz, 2H, H^{A3}), 7.52 (d, *J* = 1.4 Hz, 2H, H^{B3}), 7.32 (d, *J* = 1.7 Hz, 2H, H^{A5}), 7.31 (d, *J* = 1.4 Hz, 2H, H^{B5}), 2.69 (s, 6H, H^{Me}). 13 C{ 1 H} NMR (126 MHz, CDCl₃) δ/ppm 159.1 (C^{A6}), 156.5 (C^{A2}), 143.0 (C^{A4}/B²), 141.4 (C^{A4}/B²), 128.0 (C^{B3}), 124.0 (C^{B5}), 119.4 (C^{A5}), 114.8 (C^{A3}), 111.2 (C^{B4}), 24.8 (C^{Me}). ESI MS *m/z* 506.9 [M+H]+ (calc. 506.9).

DSC preparation. Working electrodes were either commercial (Solaronix Test Cell Titania Electrodes) or were made by screen-printing TiO_2 paste on FTO glass as previously detailed¹ using a post-treatment with $TiCl_4$ (40 mM aqueous solution). The electrodes were washed with milliQ water and EtOH and sintered at 450 °C for 30 min, then cooled to ≈ 80 °C and immersed in a DMSO solution of **1**, **2** or **3** (1.0 mM) for 24 h at room temperature. The colourless electrodes were removed from the solution, washed with DMSO and EtOH and dried using a heat gun (100 °C). Each electrode was then immersed for 3 days in an acetone solution of $[Cu(4)_2][PF_6]$, $[Cu(5)_2][PF_6]$, $[Cu(6)_2][PF_6]$ or $[Cu(7)_2][PF_6]$ (0.1 mM); during this period, the electrodes turned red-orange. They were removed from the dye-bath, washed with acetone and dried with a heat gun (80 °C). An N719 reference electrode was made by immersing a Solaronix Test Cell

Titania Electrode in a 0.3 mM EtOH solution of N719 (Solaronix) for 3 days. The electrode was then removed, washed with EtOH and dried with a heat gun (80 °C). For the counter electrodes, Solaronix Test Cell Platinum Electrodes were used, and volatile organic impurities were removed by heating on a heating plate (450 °C, 30 min).

The dye-covered TiO_2 electrode and Pt counter-electrode were combined using thermoplast hot-melt sealing foil (Solaronix Test Cell Gaskets) by heating while pressing them together. The electrolyte (LiI (0.1 M), I_2 (0.05 M), 1-methylbenzimidazole (0.5 M), 1-butyl-3-methylimidazolinium iodide (0.6 M) in 3-methoxypropionitrile) was introduced into the DSC by vacuum backfilling. The hole in the counter electrode was sealed with hot-melt sealing foil (Solaronix Test Cell Sealings) and a cover glass (Solaronix Test Cell Caps).

Measurements were made by irradiating from behind using a light source LOT Quantum Design LS0811 (100 mW cm $^{-2}$ = 1 sun). The power of the simulated light was calibrated using a reference Si cell. All DSCs were completely masked before measurements were made.

For solid-state absorption spectra of adsorbed dyes, Solaronix Test Cell Titania Electrodes Transparent were used and the dye assembly used the same soaking regime as described above

External quantum efficiencies. External quantum efficiency (EQE) measurements were made using a Spe-Quest quantum efficiency instrument from Rera Systems (Netherlands) with a 100 W halogen lamp (QTH) and a lambda 300 grating monochromator (Lot Oriel). The monochromatic light was modulated to 3Hz using a chopper wheel (ThorLabs). The cell response was amplified with a large dynamic range IV converter (CVI Melles Griot) and measured with a SR830 DSP Lock-In amplifier (Stanford Research).

Electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy (EIS) measurements were carried out on a ModuLab[®] XM PhotoEchem photoelectrochemical measurement system from Solartron Analytical. The impedance was measured around the open-circuit potential of the cell at different light intensities (590 nm) in the frequency range

 $0.05~\rm Hz$ to $400~\rm kHz$ using an amplitude of 10 mV. The impedance data was analysed using ZView $^{\rm I\!R}$ software from Scribner Associates Inc.

References

1. B. Bozic-Weber, E. C. Constable, S. O. Fürer, C. E. Housecroft, L. J. Troxler and J. A. Zampese, *Chem. Commun.*, 2013, **49**, 7222.

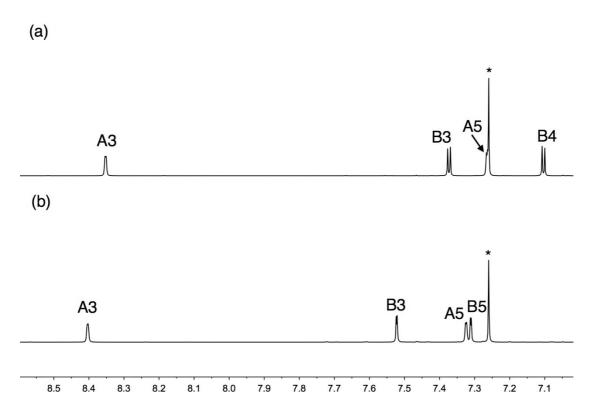
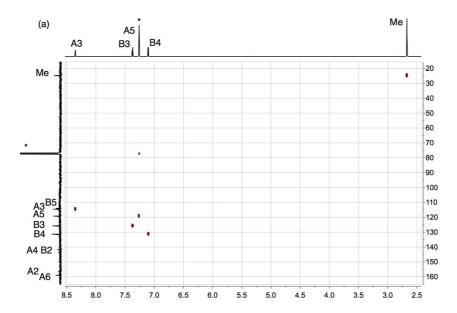



Fig. S1. Aromatic regions of the 500 MHz 1 H NMR spectra of (a) 4,4'-bis(5-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine and (b) 4,4'-bis(4-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine. * = residual CHCl $_3$ in CDCl $_3$ solvent. Chemical shifts in δ /ppm.

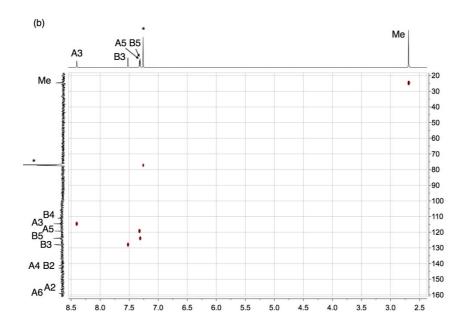
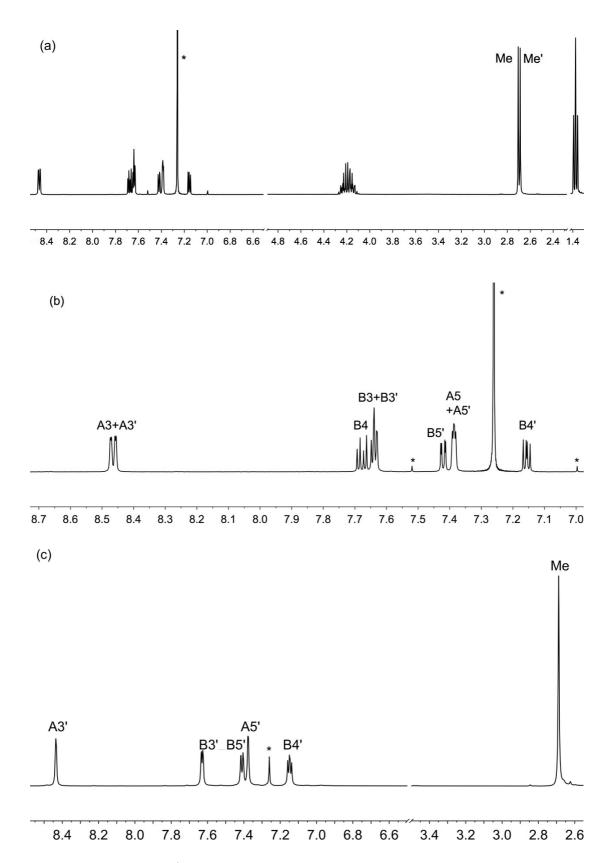
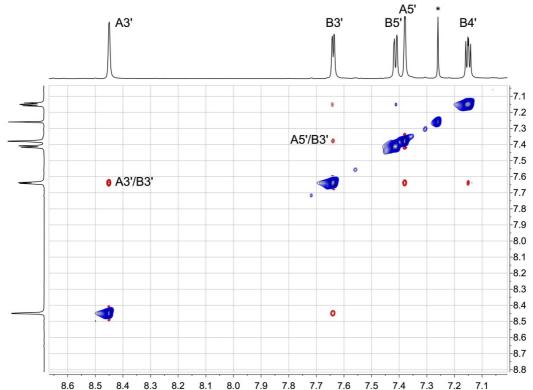


Fig. S2. HMBC spectra (1 H, 500 MHz; 13 C, 126 MHz) of (a) 4,4'-bis(5-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine and (b) 4,4'-bis(4-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine. * = residual CHCl₃/CDCl₃ solvent. Chemical shifts in δ /ppm.


Scheme S1. Competing reactions in the conversion of 4,4'-bis(5-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine to $\bf 2a$; analogous reactions occur during the conversion of 4,4'-bis(5-bromothiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine to $\bf 3a$. Cs₂CO₃, [Pd(PPh₃)₄], HPO(OEt)₂ in THF, microwave reactor, 90 °C, 2h.


Characterization data for 2b and 2c

2b: M.p. 198 °C. ¹H NMR (500 MHz, CDCl₃) δ /ppm 8.47 (d, J = 1.6 Hz, 1H, H^{A3/A3'}), 8.45 (d, J = 1.6 Hz, 1H, H^{A3/A3'}), 7.68 (dd, J_{PH} = 8.2 Hz, J_{HH} = 3.8 Hz, 1H, H^{B4}), 7.63 (m, 1H, H^{B3+B3'/B5'}), 7.63 (m, 1H, H^{B3+B3'}), 7.42 (dd, J = 5.0, 1.1 Hz, 1H, H^{B5'}), (overlapping d, 2H, H^{A5+A5'}), 7.15 (dd, J = 5.1, 3.6 Hz, 1H, H^{B4'}), 4.27–4.11 (m, 4H,

H^{Et-CH₂}), 2.73 (s, 3H, H^{Me/Me'}), 2.69 (s, 3H, H^{Me/Me'}), 1.37 (m, 6H, H^{Et-CH₃}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ /ppm 159.1 (C^{A6/A6'}), 158.8 (C^{A6/A6'}), 156.9 (C^{A2/A2'}), 156.2 (C^{A2/A2'}), 150.0 (C^{B2}), 142.7 (C^{A4/A4'}), 142.0 (C^{B2'}), 141.4 (C^{A4/A4'}), 137.7 (d, J_{PC} = 11 Hz, C^{B4}), 129.0 (d, J_{PC} = 209 Hz, C^{B5}), 128.5 (C^{B4'}), 127.0 (C^{B5'}), 126.1 (d, J_{PC} = 17 Hz, C^{B3}), 125.6 (C^{B3'}), 119.8 (C^{A5+A5'}), 115.3 (C^{A3/A3'}), 115.1 (C^{A3/A3'}), 63.0 (d, J_{PC} = 5.3 Hz, C^{Et-CH₂}), 24.85 (C^{Me/Me'}), 24.8 (C^{Me/Me'}), 16.5 (d, J_{PC} = 6.6 Hz, C^{Et-CH₃}). ³¹P{¹H} NMR (162 MHz, CDCl₃) δ /ppm +10.9. ESI-MS m/z 485.1 [M+H] (calc. 485.1). Found C 59.63, H 5.14, N 5.44%; C₂₄H₂₅N₂O₃PS₂ requires C 59.49, H 5.20, N 5.78%.

2c: Decomp. >210 °C. ¹H NMR (500 MHz, CDCl₃) δ/ppm 8.43 (d, J = 1.7 Hz, 2H, H^{A3}'), 7.63 (dd, J = 3.7, 1.2 Hz, 2H, H^{B3}'), 7.41 (dd, J = 5.0, 1.2 Hz, 2H, H^{B5}'), 7.38 (d, J = 1.7 Hz, 2H, H^{A5}'), 7.15 (dd, J = 5.1, 3.6 Hz, 1H, H^{B4}'), 2.69 (s, 3H, H^{Me}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ/ppm 158.8 (C^{A6}'), 156.4 (C^{A2}'), 142.7 (C^{B2}'/A⁴'), 142.0 (C^{B2}'/A⁴'), 128.4 (C^{B4}'), 127.0 (C^{B5}'), 125.6 (C^{B3}'), 119.7 (C^{A5}'), 115.1 (C^{A3}'), 24.8 (C^{Me}). ESI-MS m/z 349.1 [M+H]+ (calc. 349.1). High resolution ESI-MS m/z: 349.0834 [M+H]+ (calc. 349.0828).

8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 Fig. S4. 500 MHz NOESY spectrum of 4,4'-bis(thiophen-2-yl)-6,6'-dimethyl-2,2'-bipyridine (**2c** in Scheme S1) used to distinguish signals for H^{B3'} and H^{B5'}. Chemical shifts in $\partial \mathbb{Z} \mathbb{Z} \mathbb{Z}$.

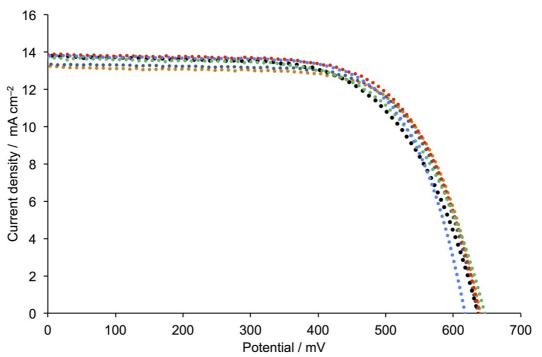


Fig. S6. *J–V* curves for six DSCs with N719 recorded on the day of DSC assembly to validate the reproducibility of the data.

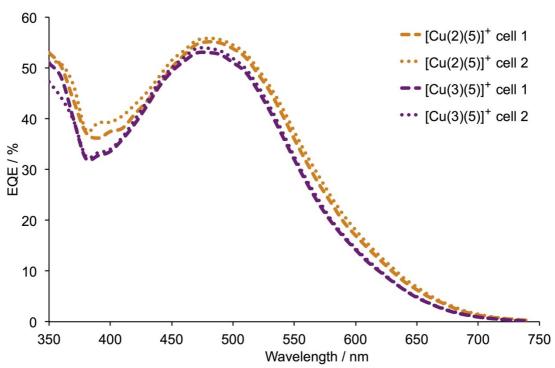


Fig. S7. EQE spectra for duplicate DSCs with $[Cu(2)(5)]^+$ and $[Cu(3)(5)]^+$ and inhouse, screen-printed FTO/TiO₂ electrodes, recorded on the day of DSC assembly.

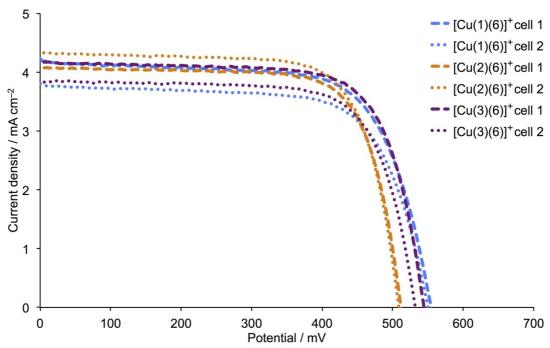


Fig. S8. J-V curves for duplicate DSCs with $[Cu(\mathbf{1})(\mathbf{6})]^+$, $[Cu(\mathbf{2})(\mathbf{6})]^+$ and $[Cu(\mathbf{3})(\mathbf{6})]^+$ and commercial FTO/TiO₂ electrodes, recorded on the day of DSC fabrication.

Table S1. Parameters for six reference DSCs with N719; commercial electrodes were used for the photoanodes and a LOT Quantum Design LS0811 was used as

the light source.

$J_{\rm SC}$ / mA cm ⁻²	$V_{\rm OC}$ / mV	ff / %	η / %		
			5.81		
			5.81		
			5.56		
			5.94		
13.74			5.63		
13.81	617	68	5.82		
13.64±0.27	636±10	66±3	5.76±0.14		
1 day after asser	nbling the DSC				
		67	5.90		
			5.65		
			5.64		
			5.61		
			5.98		
			6.00		
13.00	001	07	0.00		
12 55±0 27	650±12	66+2	5.80±0.18		
13.33±0.27	030±12	00±2	3.00±0.10		
3 days after asse	mhling the DSC				
		67	5.85		
			5.78		
			5.78		
			6.09		
			5.88		
			6.22		
13.01	000	07	0.22		
13 14+0 42	684+11	66+1	5.93±0.18		
13.14±0.42	004111	00±1	3.73±0.10		
7 days after assembling the DSC					
12.61	698	66	5.80		
13.13	686	65	5.82		
13.30	684	63	5.72		
13.29	689	65	5.93		
12.43	711	68	5.99		
		67	6.14		
13.05±0.44	691±11	66±2	5.90±0.15		
	13.38 13.23 13.81 13.88 13.74 13.81 13.64±0.27 1 day after asser 13.30 13.49 13.65 13.24 14.00 13.60 13.55±0.27 3 days after asser 12.78 12.97 13.13 13.45 12.72 13.81 13.14±0.42 7 days after asser 12.61 13.13 13.30 13.29	On the day of assembling the DSC 13.38 636 13.23 640 13.81 636 13.88 639 13.74 646 13.81 617 13.64±0.27 636±10 1 day after assembling the DSC 13.30 658 13.49 640 13.65 647 13.24 662 14.00 633 13.60 661 13.55±0.27 650±12 3 days after assembling the DSC 12.78 688 12.97 680 13.13 684 13.45 687 12.72 700 13.81 668 13.14±0.42 684±11 7 days after assembling the DSC 12.61 698 13.13 686 13.30 684 13.29 689 12.43 711 13.55 680	On the day of assembling the DSC 13.38		

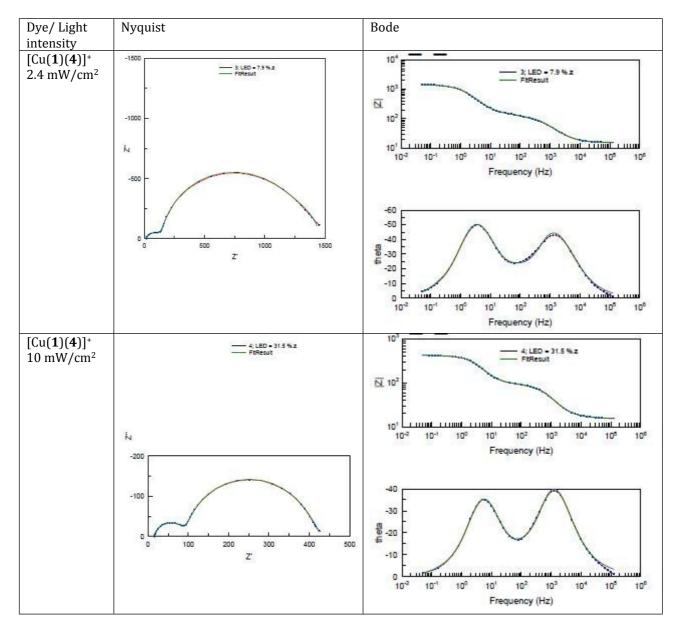
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(n_{i}-n_{average})^{2}}$$
a Standard deviation = $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(n_{i}-n_{average})^{2}}$

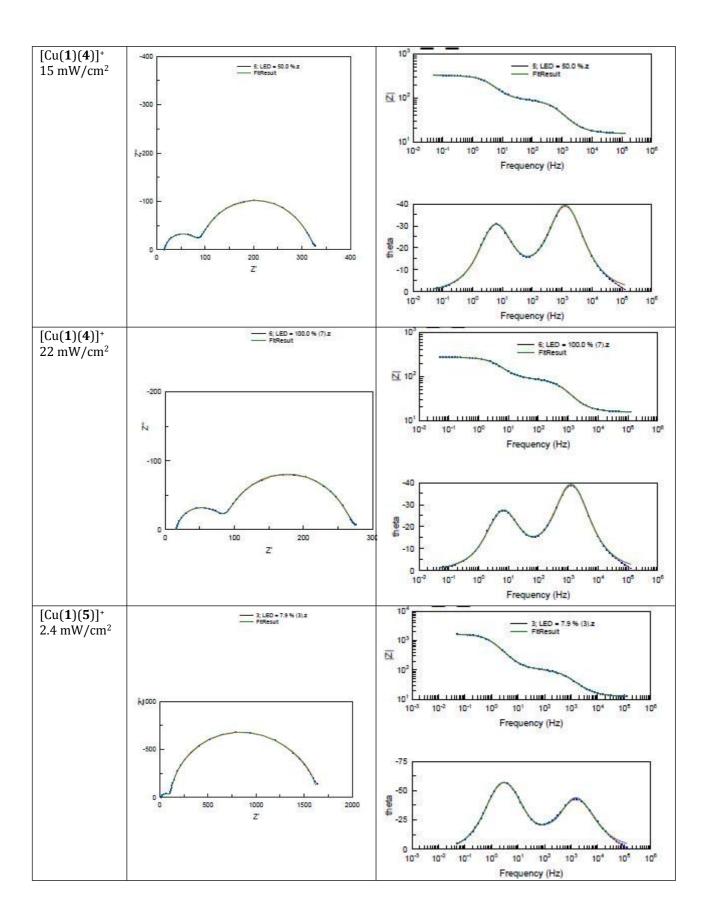
Table S2. Parameters of duplicate, masked DSCs with $[Cu(2)(5)]^+$ and $[Cu(3)(5)]^+$ compared to a reference DSC with N719; in-house, screen-printed electrodes were used for the photoanodes and a LOT Quantum Design LS0811 was used as the light source.

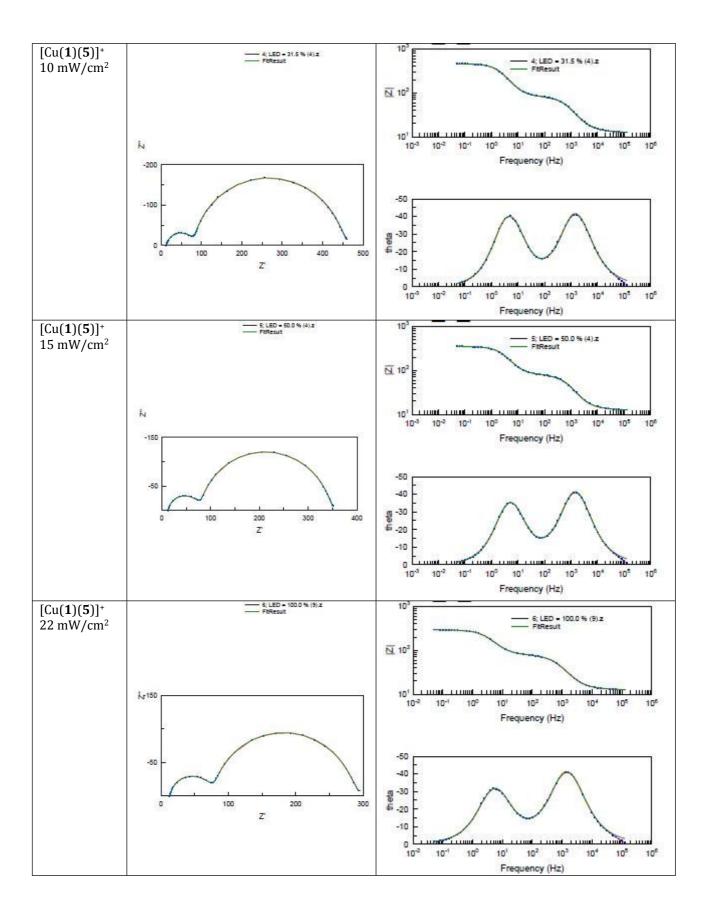
Dye	ye J _{SC} / mA cm ⁻		ff / %	2/%	Relative 2 / % ^a			
	2	mV			,			
On the day of sealing the cells								
[Cu(2)(5)] ⁺	6.18	539	69	2.31	40.1			
[Cu(2)(5)] ⁺	6.53	535	69	2.41	41.8			
[Cu(3)(5)] ⁺	5.91	596	67	2.37	41.1			
[Cu(3)(5)] ⁺	5.75	595	69	2.38	41.3			
N719	13.64	636	66	5.76	100			
3 days after s	ealing the o	cells						
[Cu(2)(5)] ⁺	5.90	535	67	2.13	35.9			
[Cu(2)(5)] ⁺	5.28	535	68	1.91	32.2			
[Cu(3)(5)] ⁺	5.87	589	64	2.23	37.6			
[Cu(3)(5)] ⁺	6.02	591	67	2.40	40.5			
N719	13.14	684	66	5.93	100			
7 days after sealing the cells								
[Cu(2)(5)] ⁺	5.72	548	69	2.16	36.6			
[Cu(2)(5)] ⁺	5.95	541	68	2.20	37.3			
[Cu(3)(5)] ⁺	5.53	626	68	2.36	40.0			
[Cu(3)(5)] ⁺	5.61	603	69	2.35	39.8			
N719	13.05	691	66	5.90	100			

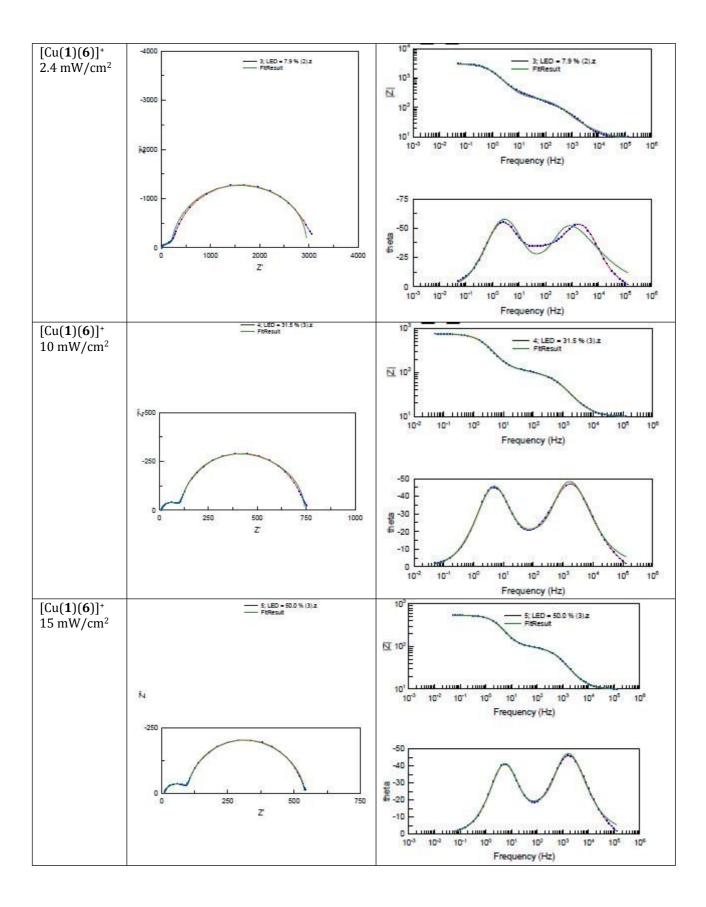
 $^{^{\}rm a}Relative$ to N719 set at 100%. See Table S1 for N719 DSCs.

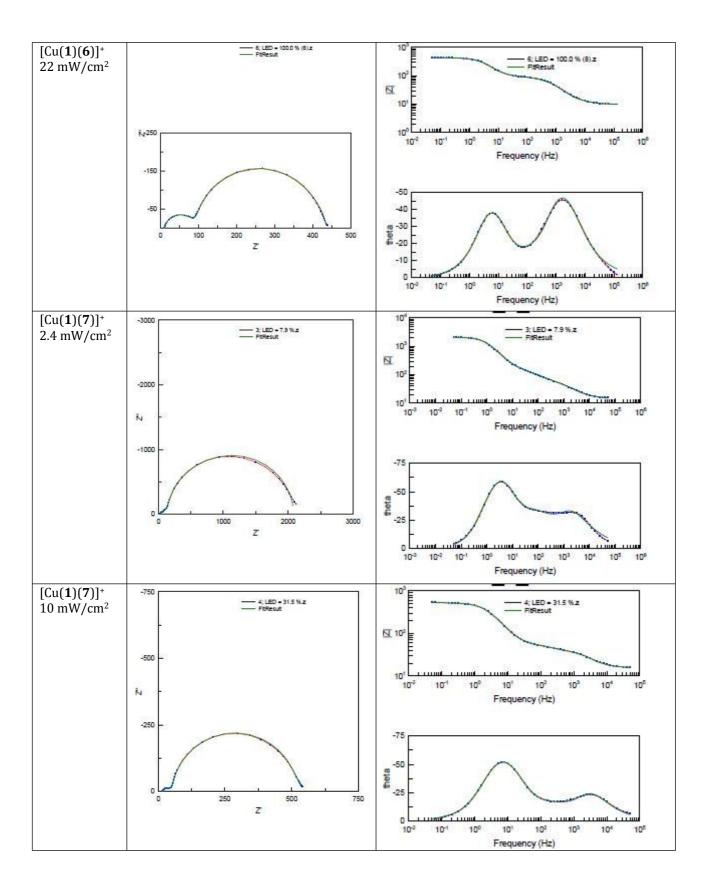
Table S3. Parameters of duplicate, masked DSCs with $[Cu(L_{anchor})(L_{ancillary})]^+$ $(L_{anchor} = 1-3, L_{ancillary} = 6, 7)$ measured 3 and 7 days after cell fabrication compared to a reference DSC with N719; commercial FTO/TiO₂ electrodes were used. The light source was a LOT Quantum Design LS0811. See Table 6 for day 0 data.


Dye	J _{SC} / mA cm ⁻²	V _{oc} / mV	ff / %	η/%	Relative η / % ^a			
3 days after sealing the cells								
[Cu(1)(6)]+b	3.08	540	70	1.17	7 19.7			
[Cu(1)(6)]+b	2.90	556	71	1.15	19.4			
[Cu(1)(7)]+	3.57	597	75	1.60	27.0			
[Cu(1)(7)] ⁺	3.73	561	73	1.53	25.8			
[Cu(2)(6)] ⁺	3.39	539	73	1.33	22.4			
[Cu(2)(6)] ⁺	4.37	553	74	1.79	30.2			
[Cu(2)(7)] ⁺	4.20	550	73	1.69	28.5			
[Cu(2)(7)] ⁺	4.58	553	75	1.89	31.9			
[Cu(3)(6)] ⁺	3.87	593 7		1.68	28.3			
[Cu(3)(6)] ⁺	3.57	553	74	1.45	24.5			
[Cu(3)(7)] ⁺	4.14	600	70	1.74	29.3			
[Cu(3)(7)] ⁺	4.52	597	73	1.97	33.2			
N719	13.14	684	66	5.93	100			
[C.,(1)(6)]+h	3.04	7 days after se	ealing the cells	1.15	19.5			
[Cu(1)(6)]+b	2.82	564		1.13	19.0			
[Cu(1)(6)]+b	3.50	590	70 75	1.12	26.3			
[Cu(1)(7)]+								
[Cu(1)(7)]+	3.79	558 551	73	1.55	26.3 24.2			
[Cu(2)(6)] ⁺	3.50	566	74 75	1.43				
[Cu(2)(6)] ⁺	4.31			1.82	30.8			
[Cu(2)(7)]+	4.22	563	74 75	1.77	30.0			
[Cu(2)(7)]+	4.59	563		1.94	32.9			
[Cu(3)(6)] ⁺	3.86	594	73	1.68	28.5			
[Cu(3)(6)] ⁺	3.54	556	74	1.46	24.7			
[Cu(3)(7)]+	4.13	604	71	1.77	30.0			
[Cu(3)(7)] ⁺	4.44	602	73	1.96	33.2			
N719	13.05	691	66	5.90	100			


^aRelative to N719 set at 100%. ^bData are from Table 1.


Table S4. Impedance data obtained during measurements at different light intensities (2,4, 10.0, 15.0 and 22.0 mW cm $^{-2}$). EIS measurements are carried out 3 days after DSC assembly.


	R_s /	R_t /	R _{rec} /	C_{μ} /	R _{Pt} /	C_{Pt}	τ/		V _{oc} /	I/
Dye	Ω	Ω	Ω	μF	Ω	/ μF	ms	L_d/L	mV	mW cm ⁻²
[Cu(1)(4)]+	14.9	192.8	1068.0	131.0	59.0	4.8	139.9	2.4	550	2.4
[Cu(1)(4)]+	14.7	87.1	303.6	206.3	50.6	5.3	62.6	1.9	600	10.0
[Cu(1)(4)]+	14.8	78.9	219.3	232.1	49.8	5.4	50.9	1.7	610	15.0
[Cu(1)(4)]+	14.9	74.5	172.0	251.8	49.4	5.4	43.3	1.5	630	22.0
[Cu(1)(5)]+	11.7	104.3	1242.0	158.53	52.8	4.7	196.9	3.5	550	2.4
[Cu(1)(5)]+	12.1	66.8	365.8	230.52	47.8	5.2	84.3	2.3	600	10.0
[Cu(1)(5)] ⁺	12.2	61.1	261.7	256.1	47.5	5.2	67.0	2.1	610	15.0
[Cu(1)(5)]+	12.2	57.9	204.3	276.1	47.4	5.2	56.4	1.9	620	22.0
[Cu(1)(6)]+	7.0	288.6	2420.0	88.3	91.2	6.9	213.6	2.9	440	2.4
[Cu(1)(6)]+	9.2	90.5	416.0	175.6	57.4	4.5	73.0	2.1	510	10.0
[Cu(1)(6)] ⁺	9.2	90.6	361.9	178.5	54.7	4.6	64.6	2.0	520	15.0
[Cu(1)(6)] ⁺	9.3	90.3	316.0	183.3	53.3	4.7	57.9	1.9	530	22.0
[Cu(1)(7)] ⁺	13.0	228.0	1723.0	130.1	16.0	8.6	224.1	2.7	493	2.4
[Cu(1)(7)] ⁺	14.8	63.9	468.1	161.9	15.1	4.6	75.8	2.7	539	10.0
[Cu(1)(7)] ⁺	15.2	44.3	327.0	184.2	14.6	4.5	60.2	2.7	543	15.0
[Cu(1)(7)] ⁺	15.4	34.8	250.5	201.4	14.2	4.6	50.4	2.7	553	22.0
[Cu(2)(5)] ⁺	12.3	251.2	738.0	93.2	59.0	5.8	68.8	1.7	510	2.4
[Cu(2)(5)] ⁺	13.6	90.9	133.4	180.3	56.6	4.8	24.0	1.2	560	10.0
[Cu(2)(5)] ⁺	13.6	86.9	114.4	184.7	55.3	4.8	21.1	1.1	576	15.0
[Cu(2)(5)] ⁺	13.7	81.8	94.1	197.0	54.5	4.8	18.5	1.1	582	22.0
[Cu(3)(5)]+	16.4	67.8	917.4	182.0	35.3	4.4	166.9	3.7	520	2.4
[Cu(3)(5)]+	18.6	44.0	266.2	260.2	32.1	4.6	69.3	2.5	568	10.0
[Cu(3)(5)]+	18.6	39.9	191.9	287.8	31.8	4.6	55.2	2.2	580	15.0
[Cu(3)(5)] ⁺	18.7	37.7	150.8	309.1	31.7	4.7	46.6	2.0	594	22.0
[Cu(2)(7)]+	11.3	203.3	787.1	109.0	13.2	8.8	85.8	2.0	516	2.4
[Cu(2)(7)] ⁺	12.4	39.0	202.7	174.6	10.9	4.9	35.4	2.3	551	10.0
[Cu(2)(7)]+	12.4	23.4	139.5	202.2	10.2	5.1	28.2	2.4	559	15.0
[Cu(2)(7)]+	12.3	17.1	107.2	222.6	9.8	5.2	23.9	2.5	578	22.0
[Cu(3)(7)]+	10.6	44.1	999.3	178.0	14.8	3.9	177.9	4.8	539	2.4
[Cu(3)(7)]+	10.9	18.5	259.8	258.5	13.5	4.1	67.1	3.7	585	10.0
[Cu(3)(7)]+	10.8	16.3	186.7	284.9	13.3	4.1	53.2	3.4	596	15.0
[Cu(3)(7)] ⁺	10.6	10.2	136.2	320.3	13.0	4.3	43.6	3.7	622	22.0


Table S5. Nyquist and Bode plots at different light intensities $(2,4, 10.0, 15.0 \text{ and } 22.0 \text{ mW cm}^{-2})$. EIS measurements are carried out 3 days after DSC assembly.

