Supporting Information

Solvothermal Synthesis, Structure and Physical Properties of Cs[Cr(en)₂MSe₄] (M = Ge, Sn) with [MSe₄]^{4–} Tetrahedra as Chelating Ligand

Yingqi Wang,^{†‡} Ruiqi Wang,[‡] Qinglong Liu,[‡] Xiaofang Lai,[‡] Xian Zhang,[‡] Haijie

Chen, $^{\perp}$ *Chong Zheng*, *§ *Jianhua Lin*, [‡] *Fuqiang Huang* *^{‡ \perp}

^{*†*} Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China

[#] Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

§ Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA.

[⊥] Department CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P.R. China

parameter	M = Ge	parameter $M = Sn$	
Cr1-N1	2.093(6)	Cr1-N1	2.091(4)
Cr1-N2	2.084(6)	Cr1-N2	2.076(5)
Cr1-N3	2.103(7)	Cr1-N3	2.112(4)
Cr1-N4	2.081(6)	Cr1-N4	2.083(5)
Cr1-Se1	2.495(1)	Cr1-Se1	2.518(1)
Cr1-Se2	2.520(1)	Cr1-Se2	2.535(1)
Ge1-Se1	2.379(1)	Sn1-Se1	2.5518(7)
Ge1-Se2	2.371(1)	Sn1-Se2	2.5340(7)
Ge1-Se3	2.319(1)	Sn1-Se3	2.5012(7)
Ge1-Se4	2.327(1)	Sn1-Se4	2.4891(7)
Cs1-Se1	3.5053(9)	Cs1-Se3	3.5506(7)
Cs1-Se2	3.5902(9)	Cs1-Se2	3.6290(7)
Cs1-Se4	3.598(1)	Cs1-Se3	3.6675(7)
Cs1-Se3	3.6228(9)	Cs1-Se1	3.7196(7)
Cs1-Se4	3.8404(8)	Cs1-Se4	3.7436(7)
Cs1-Se2	3.964(1)	Cs1-Se1	3.8181(8)
Cr1-Ge1	3.311(1)	Cr1- Sn1	3.4746(9)
Cr1-Cr1	6.065(2)	Cr1-Cr1	6.542(1)

Table S1. Selected Bond Distances (Å) and Angles for $Cs[Cr(en)_2MSe_4]$

Figure S1. The Brillouin zone and k-space pathway for Cs[Cr(en)₂SnSe₄]

Figure S2. Schematic representations of the AFM models for the compound (a) $Cs[Cr(en)_2SnSe_4]$ and (b) $Cs[Cr(en)_2GeSe_4]$. (\uparrow : spin-up, \downarrow : spin-down).

Figure S3. Partial Dos of Cs[Cr(en)₂SnSe₄]

Figure S4. Calculated local electronic band structure (left) and partial density of states (right) for Cs[Cr(en)₂GeSe₄]. (G (0, 0, 0), X (1/2, 0, 0), M (1/2, 1/2, 0), Y (0, 1/2, 0), Z (0, 0, 1/2), R (1/2, 0, 1/2), A (1/2, 1/2, 1/2), L (0, 1/2, 1/2))

Figure S5. Magnetization *vs.* field for **1** in the temperature range of 1.8–8.2 K. (a) Field-dependent magnetization plots for $Cs[Cr(en)_2GeSe_4]$ at 1.8K, 2K, 3K, 4K, 5K, 6K, 7K, 8K, 9K, 10K, 11K, 12K, 13K, 14K, and 15K. (b) ΔS_m calculated by using the magnetization data of $Cs[Cr(en)_2GeSe_4]$ at different fields and temperatures.

 Table S2. Magnetic Entropy Change for Selected 3d-metal Molecule-Based Magnetic

Compound	$-\Delta S_{\rm m}$	$-\Delta S_{\rm m}$	Т	$\mu_0 \Delta H$	Density	Ref
Compound	[J/kg K]	[mJ/cm ³ K]	[K]	[T]	[g/cm ³]	
Cs[Cr(en) ₂ SnSe ₄] (this work)	14.2	44.0	2.0	8	3.099	
Cs[Cr(en) ₂ GeSe ₄] (this work)	11.6	33.4	2.0	8	2.884	
$Mn^{II}_{4}(N_{3})_{7.3}Cl_{0.7}(dafo)_{4}$	19.3	33.3	4.0	5	1.722	1
Fe ₁₄ (bta) ₆ O ₆ (OMe) ₁₈ Cl ₆	17.6	34.0	6.0	7	1.933	2
$[Mn_{10}(OH)_6(amp)_4(ampH)_4I_4(EtOH)_4]I_4\cdot 12EtOH$	17.0	26.2	5.2	7	1.543	3
$[Mn_{14}(OH)_2(Hpeol)_4(H_2peol)_6I_4(EtOH)_6]I_4$	25.0	42.5	3.8	7	1.700	3
$Fe_{14}O_6(C_2H_2N_3)_6(OMe)_{18}Cl_6$	20.3	37	6.0	7	1.782	4
$[Mn(bpy)_3]_{1.5}[Mn_{32}(thme)_{16}(bpy)_{24}(N_3)_{12}(OAc)_{12}](ClO_4)_{11}$	18.2	25	1.6	7	1.4	5
$[Fe_{14}(C_2H_2N_3)_6O_6(OMe)_{18}Cl_6]\cdot 4.5MeOH$	20.3	42.2	6.0	7	2.079	6
Mn(glc) ₂	6.9	13.1	7.0	7	1.898	7
$Mn(glc)_2(H_2O)_2$	60.3	112	1.8	7	1.857	7
Mn(Me-ip)(DMF)	42.4	66.7	3.0	8	1.572	8
$Cs_2NaAl_{0.38}Cr_{0.62}F_6$	16.6	71.7	3.0	10	4.32	9
[CH ₃ NH ₂ CH ₃][CrMn(HCOO) ₆]	43.9	74.7	3.0	7	1.702	10
[CH ₃ NH ₃][CrMn(HCOO) ₆]	48.2	78.5	3.0	7	1.628	10

Coolants reported recently

Reference:

- J.-P. Zhao, R. Zhao, Q. Yang, B.-W. Hu, F.-C. Liu and X.-H. Bu, *Dalton Trans.*, 2013, 42, 14509-14515.
- M. Evangelisti, A. Candini, A. Ghirri, M. Affronte, E. K. Brechin and E. J. L. McInnes, *Applied Physics Letters*, 2005, 87, 072504.
- 3. M. Manoli, A. Collins, S. Parsons, A. Candini, M. Evangelisti and E. K. Brechin, *J. Am. Chem. Soc.*, 2008, **130**, 11129-11139.
- R. Shaw, R. H. Laye, L. F. Jones, D. M. Low, C. Talbot-Eeckelaers, Q. Wei, C. J. Milios, S. Teat, M. Helliwell, J. Raftery, M. Evangelisti, M. Affronte, D. Collison, E. K. Brechin and E. J. L. McInnes, *Inorg. Chem.*, 2007, 46, 4968-4978.
- 5. M. Evangelisti, A. Candini, M. Affronte, E. Pasca, L. J. de Jongh, R. T. W. Scott and E. K. Brechin, *Physical Review B*, 2009, **79**, 104414.
- R. Shaw, R. H. Laye, L. F. Jones, D. M. Low, C. Talbot-Eeckelaers, Q. Wei, C. J. Milios, S. Teat, M. Helliwell and J. Raftery, *Inorg. Chem.*, 2007, 46, 4968-4978.
- Y.-C. Chen, F.-S. Guo, J.-L. Liu, J.-D. Leng, P. Vrábel, M. Orendáč, J. Prokleška, V. Sechovský and M.-L. Tong, *Chemistry – A European Journal*, 2014, 20, 3029-3035.
- C. B. Tian, R. P. Chen, C. He, W. J. Li, Q. Wei, X. D. Zhang and S. W. Du, *Chemical Communications*, 2014, 50, 1915-1917.
- S. Pedro, J. Tedesco, F. Yokaichiya, P. Brandao, A. Gomes, S. Landsgesell, M. Pires, L. Sosman, A. Mansanares and M. Reis, *Physical Review B*, 2014, 90, 064407.
- J.-P. Zhao, S.-D. Han, X. Jiang, S.-J. Liu, R. Zhao, Z. Chang and X.-H. Bu, *Chemical Communications*, 2015, **51**, 8288-8291.