Supplementary Information to

'Effect of the synthetic route on the structural, textural, morphological and catalytic properties of Iron(III) oxides and oxyhydroxides'

Paula Oulego^a, María A. Villa-García^{b*}, Adriana Laca ^aand Mario Diaz^a

^aDepartment of Chemical and Environmental Engineering, University of Oviedo.

^bDepartment of Organic and Inorganic Chemistry, University of Oviedo.

c/Julián Clavería, s/n, 33071, Oviedo, Spain

(29 Pages, 5 Tables, 2 Figures)

Table of contents

- 1. Instrumental parameters for the determination of the iron content by ICP-MS (Table S1).
- 2. Determination of bacterial toxicity of the landfill leachate treated by catalytic wet oxidation.
- **3.** Determination of the color number (CN) of the landfill leachate treated by catalytic wet oxidation.
- 4. Selected electron diffraction pattern (SAED) of hematite H1 (Figure S1).
- 5. EDX analysis of the iron(III) oxides and oxyhydroxides (Figure S2).
- 6. Comparison of the data of this study with those found in the literature (Table S2 to S5).
- 7. References

*Corresponding author's e-mail: mavg@uniovi.es (M.A. Villa-García) Phone: +34 985 10 29 76; Fax: +34 985 10 34 46

1. Instrumental parameters for the determination of the iron content by ICP-MS (Table S1).

Inductively Coupled	Plasma	Mass Spe	ctrometer
RF power (W)	1500	Sampling cone	Nickel
Carrier gas (L/min)	1.12	Skimmer cone	Nickel
Plasma gas (L/min)	15	Data acquisition	3 points per mass
Auxiliary gas (L/min)	1.0	Integration time	0.1 s per point
Sample depth (mm)	8	Acquisitions	5
Solution uptake rate (mL/min)	0.4	Analytical masses	⁵⁷ Fe and ¹⁰³ Rh
Nebulizer	Babington type		

Table S1. Instrumental parameters for ICP-MS.

2. Determination of bacterial toxicity of the landfill leachate treated by catalytic wet oxidation

The assessment of bacterial toxicity was carried out with *Vibrio fischeri*. The commercial assay Biofix®Lumi-10 (Macherey-Nagel, Germany) was employed using a freeze-dried specially selected strain of the marine bacterium (NRRL number B-11177). Toxicity was evaluated in samples diluted 1:5 and results were given as inhibition percentage (LI) according to ISO 11348-3. The drop in light emission of the bacteria after a contact period of 15 min was measured and compared with a sample of control free of toxicants (2% NaCl solution). Temperature was kept at 15 °C by a thermo block and sample salinity was adjusted to 2% after adjusting the sample pH between 6.5 and 7.5.

3. Determination of the color number (CN) of the landfill leachate treated by catalytic wet oxidation

As it was previously commented in the manuscript, the color number (CN), was employed to monitor changes in the color of the leachate during its oxidation, its value was calculated using equation S1. Spectral absorbance coefficients (SAC) are defined as the ratio of the values of the respective absorbance (Abs) over the cell thickness (x) (see equation S2). This parameter was measured at 436, 525 and 620 nm using a UV/Vis spectrophotometer (Thermo Scientific, Heλios γ).

$$CN = \frac{SAC_{436}^2 + SAC_{525}^2 + SAC_{620}^2}{SAC_{436} + SAC_{525} + SAC_{620}}$$
(S1)

$$SAC_i = \frac{Abs_i}{x}$$
(S2)

4. Selected electron diffraction pattern (SAED) of hematite H1 (Figure S1).

Figure S1. Electron diffraction pattern of hematite H1 (right) and simulated electron diffraction pattern of the rhomboedral hematite JCPDS no. 33-0664 (left).

5. EDX analysis of the iron(III) oxides and oxyhydroxides (Figure S2).

Figure S2. EDX analysis of the iron(III) oxides and oxyhydroxides.

6. Comparison of the data of this study with those found in the literature (Table S2 to S5).

	Results of this study			Data found in the literature				
Sample	XRD peaks of the solids	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Reference
Hematite	Solid H1: 24.1°, 35.7°, 49.5°, 57.8°, 62.6°, 72.1° and 75.4°	Solid H1: (012), (110), (024), (018), (300), (1010), (220)	Rhombohedr al hematite: JCPDS no. 33-0664.	Very poorly ordered material.	 Hematite nanospheres¹: (012), (104), (110), (113), (024), (116), (018), (214), (300) Hematite nanocubes² and thin film³: (012), (104), (110), (113), (024), (116), (018), (214), (300), (1010) Hematite nanocubes⁴: 	Rhombohedra l hematite: JCPDS no. 33-0664.	 Hematite nanospheres¹: crystalline. Hematite nanocubes^{2,4}: highly crystalline. Hematite thin film³: crystalline. 	¹ Tadic et al., 2012; ² Qin et al., 2011; ³ Hamd et al., 2012; ⁴ Chernysho- va et al., 2010.

		(012), (104), (110),		
		(006), (113), (200),		
		(024), (116), (018),		
		(214), (300), (208)		

		Results	of this study		Data found in the literature				
Sample	XRD peaks of the solids	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Reference	
Hematite	Solid H2: 24.1°, 33.4°, 35.7°, 41.1°, 49.5°, 54.2°, 62.6°, 64.1°, 72.1° and 75.4°	Solid H2: (012), (104), (110), (113), (024), (116), (214), (300), (1010), (220)	Rhombohedral hematite: JCPDS no. 33- 0664.	Poorly ordered material and/or presence of very fine hematite	 Hematite nanospheres¹: (012), (104), (110), (113), (024), (116), (018), (214), (300) Hematite nanocubes² and thin film³: 	Rhombohedr al hematite: JCPDS no. 33-0664.	 Hematite nanospheres¹ : crystalline. Hematite nanocubes^{2,4}: highly. crystalline 	¹ Tadic et al., 2012; ² Qin et al., 2011; ³ Hamd et al., 2012; ⁴ Chernysho- va et al.,	

	particles	(012), (104), (110),	• Hematite thin	2010.
		(113), (024), (116),	film ³ :	
		(018), (214), (300),	crystalline.	
		(1010)		
		• Hematite		
		nanocubes ⁴ :		
		(012), (104), (110),		
		(006), (113), (200),		
		(024), (116), (018),		
		(214), (300), (208)		

	Results of this study				Data found in the literature			
Sample	XRD peaks of the solids	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Reference

Ferrihy- drite	Solid Fh:35.7° and 63.5°	Solid Fh: (110), (300)	No single formula is widely accepted. Fe _{10.4} O _{14.2} (OH) ₂	Poorly ordered material.	• 2-line ferrihydrite ^{5,6} : (110), (300)	$Fe_{10}O_{14}(OH)_{2}^{5}$ $Fe_{5}HO_{8} \cdot 4H_{2}O^{6};$ $5Fe_{2}O_{3} \cdot 9H_{2}O^{6,7};$	Poorly crystalline. ⁵⁻⁷	 ⁵Michel et al., 2007; ⁶Tüysüz et al., 2011; ⁷Fleischer et al.
								1975.

		Results of this study				Data found in the literature			
Sample	XRD peaks of the solids	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Reference	

Goethite	Solid G1: 17.9°, 21.2°, 26.1°,33.2°, 33.5°, 36.7°, 40.3°, 41.4°, 45.5°, 47.6°, 50.9, 53.1°, 57.6°, 59.1°, 61.5°, 64.7°, 69.3°, 71.7° and 75.4°	Solid G1: (020), (110), (120), (130), (021), (111), (121), (140), (131), (041), (211), (221), (231), (151), (002), (061), (112), (170), (132)	Orthorhombi c phase of goethite: JCPDS no. 29-0713.	Highly crystalline.	 Goethite rods^{8,9}: (020), (110), (120), (130), (021), (040), (111), (200), (121), (140), (211), (221), (240), (231), (151), (160), (020), (161) Acicular goethite¹⁰: (020), (110), (120), (130), (021), (040), (111), (200), (121), (140), (211), (221) 	Orthorhombic phase of goethite: JCPDS no. 29- 0713.	Goethite rods: highly crystalline. ^{8,9} Acicular goethite: highly crystalline. ¹⁰	 ⁸Ristić et al., 2015; ⁹Wei et al., 2012; ¹⁰Montes- Hernandez et al., 2011.
----------	--	--	---	------------------------	---	---	--	--

		Results of this study				Data found in the literature		
Sample	XRD peaks	Miller indices (hkl)	Iron-bearing	Crystallinity	Miller indices (hkl)	Iron-bearing	Crystallinity	Reference

	of the solids		phase	of the solids		phase	of the solids	
				of this study			of this study	
Goethite	Solid G2: 17.9°, 21.2°, 26.1°,33.2°, 33.5°, 36.7°, 40.3°, 41.4°, 47.6°, 50.9, 53.1°, 57.6°, 59.1°, 61.5°, 64.7°, 69.3°, 71.7° and 75.4°	Solid G2: (020), (110), (120), (130), (021), (111), (121), (140), (041), (211), (221), (231), (151), (002), (061), (112), (170), (132)	Orthorhombi c phase of goethite: JCPDS no. 29-0713.	Highly crystalline	 Goethite rods^{8,9}: (020), (110), (120), (130), (021), (040), (111), (200), (121), (140), (211), (221), (240), (231), (151), (160), (020), (161) Acicular goethite¹⁰: (020), (110), (120), (130), (021), (040), (111), (200), (121), (140), (211), (221) 	Orthorhombi c phase of goethite: JCPDS no. 29-0713.	Goethite rods: highly crystalline. ^{8,9} Acicular goethite: highly crystalline. ¹⁰	 ⁸Ristić et al., 2015; ⁹Wei et al., 2012; ¹⁰Montes- Hernandez et al., 2011.

Results of this study	Data found in the literature
-----------------------	------------------------------

Sample	XRD peaks of the solids	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Miller indices (hkl)	Iron-bearing phase	Crystallinity of the solids of this study	Reference
Mixture of hematite and goethite	Solid GH: • Hematite: 24.1°, 33.4°, 35.7°, 41.1°, 49.5°, 54.2°, 62.6°, 64.1°, 72.1° and 75.4° • Goethite: 36.7°, 53.3°, 57.6° and 59.2°	Solid GH: • Hematite: (012), (104), (110), (113), (024), (116), (214), (300), (1010), (220) • Goethite: (111), (221), (231), (151)	 Rhombohedr al hematite: JCPDS no. 33-0664. Orthorhombi c phase of goethite: JCPDS no. 29-0713. 	Both phases highly crystalline	 Hematite nanocubes⁴ (012), (104), (110), (113), (024), (116), (018), (214), (300), (1010) Goethite rods^{8,9} (020), (110), (120), (130), (021), (040), (111), (200), (121), (140), (211), (221), (240), (231), (151), (160), (020), (161) 	 Rhombohedral hematite: JCPDS no. 33- 0664. Orthorhombic phase of goethite: JCPDS no. 29- 0713. 	 Hematite nanocubes⁴: highly crystalline. Goethite rods: highly crystalline.^{8,9} 	⁴ Chernyshov a et al., 2010. ⁸ Ristić et al., 2015; ⁹ Wei et al., 2012.

	R	esults of this stu	dy		Data foi	und in the literature	
Sample	Doublet	<i>Isomer shift</i> (δ) mm·s ⁻¹	Q uadrupole splitting (ΔE_Q)	Doublet	<i>Isomer shift</i> (δ) mm·s ⁻¹	Q uadrupole splitting (ΔE_Q)	Reference
Ferrihydrite (Fh)	Single Paramagnetic	0.35	0.62	Paramagnetic	0.33 ¹¹ 0.35 ¹²	0.62 ¹¹ 0.63 ¹²	¹¹ Ristić et al., 2007; ¹² Murad, 1996.
Hematite (H1)	Paramagnetic	0.35	0.72	Paramagnetic	0.35 ¹³ 0.33 ¹⁴ 0.33-0.35 ¹⁵	0.68 ¹³ 0.75 ¹⁴ 0.80 ¹⁵	 ¹³Pariona et al., 2016; ¹⁴Mashlan et al., 2004; ¹⁵Zboril et al., 2002.

Table S3. Comparison of Mössbauer data obtained in this study with those found in the literature.

		R	esults of thi	s study			L	Data found i	n the literatu	re	
Sample	OH stretching vibrations (cm ⁻¹)	OH bending vibration s (cm ⁻¹)	Lattice vibration s (cm ⁻¹)	Carbonate species stretching vibrations (cm ⁻¹)	Characteristi c vibrations (cm ⁻¹)	OH stretching vibrations (cm ⁻¹)	OH bending vibrations (cm ⁻¹)	Lattice vibration s (cm ⁻¹)	Carbonate species stretching vibrations (cm ⁻¹)	Characte- ristic vibrations (cm ⁻¹)	Reference
Ferrihy- drite (Fh)	3400	1636	668	1384, 1108	580, 452	3420-335711	1623- 1620 ¹¹	660 ¹¹ <700 ¹⁶	1352 ¹¹ 1360 ¹⁷ , 1070 ¹⁷	580, 44111	 ¹¹Ristić et al., 2007; ¹⁶Krehula and Musić, 2008; ¹⁷Su and Suarez,1997
Hematite (H1 and H2)	3434	1636	668	1540 1384	532, 445	3420-335711	1623- 1620 ¹¹	66011	1490 ¹⁷ , 1360 ¹⁷	526,440 ¹⁸	 ¹¹Ristić et al., 2007; ¹⁶Krehula and Musić, 2008 ¹⁷Su and Suarez, 1997;

Table S4. Comparison of FT-IR data obtained in this study with those found in the literature.

					¹⁸ Jubb et al.,
					2010

		R	esults of thi	is study			1	Data found i	n the literatu	re	
Sample	OH stretching vibrations (cm ⁻¹)	OH bending vibration s (cm ⁻¹)	Lattice vibration s (cm ⁻¹)	Carbonate species stretching vibrations (cm ⁻¹)	Characteristi c vibrations (cm ⁻¹)	OH stretching vibrations (cm ⁻¹)	OH bending vibrations (cm ⁻¹)	Lattice vibration s (cm ⁻¹)	Carbonate species stretching vibrations (cm ⁻¹)	Characte- ristic vibrations (cm ⁻¹)	Reference
Goethite (G1 and G2)	3434 ^a , 3136 ^b	1636	668	1384, 1111	894 ^c , 796 ^d , 636 ^e , 457 ^f	3420- 3357 ^{a,11} 3144 ^{b,18}	1620- 1623 ¹¹	660 ¹¹ <700 ¹⁶	1352 ¹¹ 1360 ¹⁷ , 1070 ¹⁷	895- 884 ^{c,19,20} , 800- 798 ^{d,19,20} 622- 617 ^{e,20} 461-454 ^{f,20}	 ¹¹Ristić et al., 2007; ¹⁶Krehula and Musić, 2008; ¹⁷Su and Suarez,1997; ¹⁸Jubb et al., 2010; ¹⁹Gotić and Musić, 2007;

					²⁰ Ruan et al.,
					2001.

^aPhysically adsorbed water molecules; ^bin the goethite structure; ^cFe-O-H vibration in-plane; ^dFe-O-H vibration out-of-plane; ^eFeO₆ vibration in the a-plane; ^fFeO₆ vibration in the b-c-plane.

		R	esults of thi	s study			L	Data found i	n the literatu	re	
Sample	OH stretching vibrations (cm ⁻¹)	OH bending vibration s (cm ⁻¹)	Lattice vibration s (cm ⁻¹)	Carbonate species stretching vibrations (cm ⁻¹)	Characteristi c vibrations (cm ⁻¹)	OH stretching vibrations (cm ⁻¹)	OH bending vibrations (cm ⁻¹)	Lattice vibration s (cm ⁻¹)	Carbonate species stretching vibrations (cm ⁻¹)	Characte- ristic vibrations (cm ⁻¹)	Reference
Mixture of hematite and goethite (GH)	3447	1636	668	1384, 1112	894ª, 796 ^b , 560°, 480°	3420-335711	1620- 1623 ¹¹	660 ¹¹ <700 ¹⁶	1352 ¹¹ 1360 ¹⁷ , 1070 ¹⁷	895- 884 ^{a,19,20} , 800- 798 ^{b,19,20} , 580 ^{c,11} , 441 ^{c,11}	 ¹¹Ristić et al., 2007; ¹⁶Krehula and Musić, 2008; ¹⁷Su and Suarez, 1997; ¹⁹Gotić and Musić, 2007; ²⁰Ruan et al., 2001.

^aFe-O-H vibration in-plane; ^bFe-O-H vibration out-of-plane; ^cBands which are the fingerprint of hematite (morphological effects can vary the positions of these bands).

		Synth	etic route	1				Data foun	d in the literature	2	
Sample	Iron source ^b ; Additive ^c	Method ^d	рН	T of ageing (°C)	Time (h)	BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: TEM(nm)	Morphology	Reference
Hematite	Fe(III) salt; No additive	Precipitation	n.a.	20	4	n.a.	n.a.	n.a.	Average: 50- 100	Irregular	²¹ Paul et al., 2015
Hematite	Fe(III) salt; With additives	Precipitation	n.a.	20	4	244.8 - 276.2	8.83-9.74	0.596 - 0.609	Average:2-50	Quasi spherical	²¹ Paul et al., 2015

^aImplying batch system. ^bFe(III) salt: Fe(NO₃)₃·9H₂O. ^cAdditives: *PEG 400 or PEG 4000*. ^dPrecipitating agent: $(CH_2)_6N_4$ n.a.: Not reported.

		Syntheti	c route ^a					Data found i	n the literature		
Sample	Iron source ^b ; Additive	Method ^c	рН	T of ageing (°C)	Time (h)	BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: TEM ^d or Scherrer ^e (nm)	Morphology	Reference
Hematite	Fe(III) salt; No additive	Precipitation	n.a.	20	4	n.a.	n.a.	n.a.	Average ^e : 31	Spheroidal	²² Sivakumar et al., 2014
Hematite	Fe(III) salt; No additive	Precipitation (under pure N ₂ gas)	7	>100	1	18.5-55.4	n.a.	n.a.	Average ^d : 50-150	Spherical, cubic and ellipsoidal	²³ Supatta- rasakda et al., 2013

^aImplying batch system. ^bFe(III) salt: FeCl₃·6H₂O. ^cPrecipitating agent: NaOH n.a.: Not reported.

		Synthet	tic route ^a		Data found in the literature							
Sample	Iron source ^b ; Additive	Method ^c	рН	T of ageing (°C)	Time (h)	BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: TEM (nm)	Morphology	Reference	
Hematite	Fe(III) salt; No additive	Precipitation	7	>100	n.a.	17.18-31.83	n.a.	n.a.	Average: 60-80	Quasi- spherical	²⁴ Liu et al., 2007	
Hematite	Fe(III) salt;	Precipitation	H1: 9	H1: 20	H1:3	H1: 291.4	H1: 3.32- 3.97	H1:0.328	H1(average): 4	H1: Spheroidal	This study	
	No additive		H2: 12	H2: 20	H2:3	H2: 118.3	H2: 5.77- 6.20	H2:0.188	H2: widely variable	H2: amorphous		

^aImplying batch system. ^bFe(III) salt: FeCl₃·6H₂O or Fe(NO₃)₃·9H₂O. ^cPrecipitating agent: NaOH or NH₄OH n.a.: Not reported.

	S	Synthetic ro	ute ^a					Data found in	the literature		
Sample	Iron source ^b ; Additive	Method	рН	T of ageing (°C)	Time (h)	BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: TEM (nm)	Morphology	Reference
Ferrihy- drite	Fe(III) salt; cyclohexane, polyethylene-glycol, ammonia solution and isopropanol	Micro- emulsion	n.a.	50	3	390	5.6	0.54	n.a.	n.a.	²⁵ Xu et al., 2013
Ferrihy- drite	Fe(III) salt; cyclohexane, polyethylene-glycol, ammonia solution and isopropanol	Micro- emulsion	n.a.	50	3	97	9.3	0.25	Average : 10	spherical	²⁶ Yan et al., 2015

^aImplying batch system. ^bFe(III) salt: FeCl₃. n.a.: Not reported.

		Synthetic ro	ute ^a					Data found in	the literature		
Sample	Iron source ^b ; Additive	Method	рН	T of ageing (°C)	Time (h)	BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: TEM (nm)	Morphology	Reference
Ferrihy- drite	Fe(III) salt; brij 58, isopropyl alcohol and ammonia solution	Micro- emulsion	8	55	72	192.3	5.00-5.54	0.341	Average: 7	Spheroidal	This study (solid Fh)

^aImplying batch system. ^bFe(III) salt: Fe(NO₃)₃·9H₂O.

		Synthe	etic route	pa a		Data found in the literature								
Sample	Iron sourceb; AdditivecMethoddT of pHTime ageing (°C)Time (h)				BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: FESEM ^e or TEM ^f (nm)	Morphology	Reference				
Goethite	Fe(III) salt; No additive	Sol-gel	2.5- 13.5	30	24	133.80	n.a.	n.a.	Length ^e : 250±35 Width ^e : 65±20	low acicular	¹⁰ Montes- Hernández et al., 2011			
Goethite	Fe(III) salt; With additive	Sol-gel	3.0	90	1	n.a.	n.a.	n.a.	Largest dimension ^f : 1-10	Irregular	²⁷ Mohapatra et al., 2009			

^aImplying batch system. ^bFe(III) salt: Fe(NO₃)₃·9H₂O or FeCl₃·6H₂O ^cAdditive: hydrazine sulphate. ^dAlkaline source: NaOH or Ca(OH)₂.

n.a.: Not reported.

		Synthe	etic route	a		Data found in the literature								
Sample	Iron source ^b ; Additive ^c	Method	рН	T of ageing (°C)	Time (h)	BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: TEM (nm)	Morphology	Reference			
Goethite	Fe(III) salt; No additive	Sol-gel ^d	11-12	25-120	48-288	n.a.	n.a.	n.a.	Length: 202 to 282; Width: 16 to 86	Rod or Lath- like particles	²⁸ Thies- Weesie et al., 2007			

		Micro-									
Goethite	Fe(III) salt; With	emulsion and	n.a.	90	2-6	n.a.	n.a.	n.a.	Length: 60 to 150: Width: 7	Nanotubes	²⁹ Yu et al., 2007
	additives	precipi-							100, 111000		
		tation ^e									

^aImplying batch system. ^bFe(III) salt: Fe(NO₃)₃·9H₂O or FeCl₃ ^cAdditives: hydrazine sulphate, oleic acid, and xylene. ^dAlkaline source: NaOH or NH₄OH ^ePrecipitating agent: CH₃CH₂OH. n.a.: Not reported.

		Synthe	etic route	<u>9</u> a		Data found in the literature							
Sample	Iron source ^b ; Additive ^c	Method	рН	T of ageing (°C)	Time (h)	BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: TEM (nm)	Morphology	Reference		
Goethite	Fe(III) salt; With additive	Sol-gel ^d	12	90	72	n.a.	n.a.	n.a.	Length:90- 152; Width:10-14	Nanorods	³⁰ Lee Penn et al., 2006		

Goethite $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	280-316 1.7-8.8	0.22-0.47Largest dimension: 2- 10Spongy mass. Not well defined nanorods31Bakoyannakis et al., 2003	
---	-----------------	--	--

^aDialysis (semicontinuous reactor). ^bFe(III) salt: Fe(NO₃)₃·9H₂O, FeCl₃·6H₂O or Fe₂(SO₄)₃·xH₂O. ^cAdditive: NaHCO₃· ^dAlkaline source (OH): NaOH. ^ePrecipitating agent: (NH₄)₂CO₃ or NH₂CO₂NH₄. n.a. Not reported.

		Synthe	tic route ^a			Data found in the literature						
Sample	Iron source ^b ; Additive	<i>Method^c</i>	рН	T of ageing (°C)	Time (h)	BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: TEM (nm)	Morphology	Reference	

Goethite	Fe(III) salt; No additive	Sol-gel	n.a.	80	48	40.20-47.05	n.a.	n.a.	n.a.	n.a.	³² Kosmulski et al., 2003
Goethite	Fe(III) salt; No additive		G1: 3-13	G1: 95	G1:168	G1: 51.3	G1: 28.36- 32.20	G1:0.404	G1: Length: 400 ± 50; Width :15 ± 5	G1: Highly acicular	
		Sol-gel	G2: 3-13	G2: 95	G2:168	G2: 53.6	G2: 22.07- 23.95	G2:0.322	G2: Length: 950 ± 100; Width : 140 ± 20	G2: Moderately acicular	This study

^aImplying batch system. ^bFe(III) salt: Fe(NO₃)₃ or FeCl₃·6H₂O ^cPrecipitating agent: KOH or NaOH n.a.: Not reported.

		Synthe	etic route	pû		Data found in the literature								
Sample	Iron source ^b ; Additive	Method ^c	рН	T of ageing (°C)	Time (h)	BET surface area (m²/g)	Average pore size (nm)	Pore Volume (cm ³ /g)	Particle Size: FESEM ^e or TEM ^f (nm)	Morphology	Reference			
Mixture Goethite- Hematite	Fe(III) salt; No additive	Sol-gel	2.5- 13.5	70	24	31.20	n.a.	n.a.	Length ^e : 750±100; Width ^e : 60±20	Highly acicular goethite; no data for hematite	¹⁰ Montes- Hernández et al., 2011			
Mixture Goethite- Hematite	Fe(III) salt; No additive	Sol-gel	3-13	95	168	13.2	27.74-31.56	0.102	Length ^f : 880±100; Width ^f : 145±50	Acicular (goethite); Pseudocubic (hematite)	This study (GH)			

^aImplying batch system. ^bFe(III) salt: Fe(NO₃)₃·9H₂O or FeCl₃·6H₂O. ^cAlkaline source: NaOH or Ca(OH)₂. n.a.: Not reported.

7. References

- M. Tadic, N. Citakovic, M. Panjan, B. Stanojevic, D. Markovic, Đ. Jovanovic and V. Spasojevic, *J. Alloy. Compd.*, 2012, **543**, 118-124.
- 2. W. Qin, C. Yang, R. Yi and G. Gao, J. Nanomater., 2011, 2011, 1-5.
- W. Hamd, S. Cobo, J. Fize, G. Baldinozzi, W. Schwartz, M. Reymermier, A. Pereira, M. Fontecave, V. Artero, C. Laberty-Robert and C. Sanchez, *Phys. Chem. Chem. Phys.*, 2012, 14, 13224-13232.
- I. V. Chernyshova, S. Ponnurangam and P. Somasundaran, *Phys. Chem. Chem. Phys.*, 2010, **12**, 14045-14056.
- F. M. Michel, L. Ehm, S. M. Antao, P. L. Lee, P. J. Chupas, G. Liu, D. R. Strongin, M. A. A. Schoonen, B. L. Phillips and J. B. Parise, *Science*, 2007, **316**, 1726-1729.
- H. Tüysüz, E. L. Salabaş, C. Weidenthaler and F. Schüth, *J. Am. Chem. Soc.*, 2007, 130, 280-287.
- 7. M. Fleischer, G. Y. Chao and A. Kato, Am. Mineral., 1975, 60, 485-489.
- M. Ristić, I. Opačak, J. Štajdohar and S. Musić, J. Mol. Struct., 2015, 1090, 129-137.
- 9. C. Wei, P. Qiao, Z. Nan, Mater. Sci. Eng: C, 2012, 32, 1524-1530.
- G. Montes-Hernandez, P. Beck, F. Renard, E. Quirico, B. Lanson, R. Chiriac and N. Findling, *Cryst. Growth Des.*, 2011, 11, 2264-2272.
- M. Ristić, E. De Grave, S. Musić, S. Popović and Z. Orehovec, J. Mol. Struct., 2007, 834–836, 454-460.
- 12. E. Murad, Phys. Chem. Miner., 1996, 23, 248-262.
- N. Pariona, K. I. Camacho-Aguilar, R. Ramos-González, A. I. Martinez, M. Herrera-Trejo and E. Baggio-Saitovitch, *J. Magn. Magn. Mater.*, 2016, 406, 221-227.

- M. Mashlan, R. Zboril, L. Machala, M. Vujtek, J. Walla and K. Nomura, J. Metastab. Nanocryst., 2004, 20-21, 641-647.
- 15. R. Zboril, M. Mashlan and D. Petridis, Chem. Mater., 2002, 14, 969-982.
- 16. S. Krehula and S. Musić, J. Cryst. Growth, 2008, 310, 513-520.
- 17. C. Su and D. L. Suarez, Clay. Clay. Miner., 1997, 45, 814-825.
- 18. A. M. Jubb and H. C. Allen, ACS Appl. Mater. Inter., 2010, 2, 2804-2812.
- 19. M. Gotić and S. Musić, J. Mol. Struct., 2007, 834-836, 445-453.
- H. D. Ruan, R. L. Frost and J. T. Kloprogge, *Spectrochim. Acta A*, 2001, **57**, 2575-2586.
- B. Paul, B. Bhuyan, D. D. Purkayastha and S. S. Dhar, *Catal. Commun.*, 2015, 69, 48-54.
- 22. S. Sivakumar, D. Anusuya, C. P. Khatiwada, J. Sivasubramanian, A. Venkatesan and P. Soundhirarajan, *Spectrochim. Acta Part A*, 2014, **128**, 69-75.
- K. Supattarasakda, K. Petcharoen, T. Permpool, A. Sirivat and W. Lerdwijitjarud, *Powder Technol.*, 2013, 249, 353-359.
- 24. H. Liu, Y. Wei, P. Li, Y. Zhang and Y. Sun, Mater. Chem. Phys., 2007, 102, 1-6.
- 25. Z. Xu, J. Yu and W. Xiao, Chem Eur. J., 2013, 19, 9592-9598.
- 26. Z. Yan, Z. Xu, J. Yu and M. Jaroniec, Environ. Sci. Technol., 2015, 49, 6637-6644.
- M. Mohapatra, K. Rout, S. K. Gupta, P. Singh, S. Anand and B. K. Mishra, J. Nanopart. Res., 2009, 12, 681-686.
- D. M. E. Thies-Weesie, J. P. de Hoog, M. H. Hernandez Mendiola, A. V. Petukhov and G. J. Vroege, *Chem. Mater.*, 2007, 19, 5538-5546.
- T. Yu, J. Park, J. Moon, K. An, Y. Piao and T. Hyeon, J. Am. Chem. Soc., 2007, 129, 14558-14559.
- 30. R. Lee Penn, J. J. Erbs and D. M. Gulliver, J. Cryst. Growth, 2006, 293, 1-4.

- 31. D. N. Bakoyannakis, E. A. Deliyanni, A. I. Zouboulis, K. A. Matis, L. Nalbandian and T. Kehagias, *Micropor. and Mesopor. Mat.*, 2003, **59**, 35-42.
- M. Kosmulski, E. Maczka, E. Jartych and J. B. Rosenholm, *Adv. Colloid Interfac.*, 2003, 103, 57-76.