Supplementary Information

Cyclopentadienyl Nickel (II) N,C-Chelating Benzothiazolyl NHC Complexes: Synthesis, Characterization and Application in Catalytic C-C Bond Formation Reactions

Wei Jie Teo,^a Zhe Wang,^b Fei Xue,^a T. S. Andy Hor,^{*a,b,c} Jin Zhao^{*a,b}

^a Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

^b Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore.

^c Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China

Email addresses: zhaoj@imre.a-star.edu.sg; andyhor@hku.hk

Table of Contents

I. ¹ H, ¹³ C, and ³¹ P-NMR spectra of $2a-2c$	2
II. ¹ H, ¹³ C, and ³¹ P-NMR spectra of 3a-3c	7
III. Results for catalytic C-C bond formation reactions	12
IV. ¹ H, ¹³ C-NMR data and spectra of the bibenzyl products	13
V. Crystal data and structure refinement parameters of complexes 3a-3c	24
VI. References	25

I. ¹H, ¹³C and ³¹P NMR spectra of ligands **2a-2c**

b

II. ¹H, ¹³C and ³¹P NMR spectra of complexes **3a-3c**

3b

III. Results for catalytic C-C bond formation reactions

X		OMe + ArN	IgBr THF/Tolu Conditio	uene Dns	Ar	⊦ Ar-Ar
	5a				5a'	5a''
Entry X	v	X Ar	Temperature	Time	Yield of 5a' ^b	Yield of 5a " ^{<i>b,c</i>}
	А			(h)	(%)	(%)
1	Br	Ph	r.t	1	40	50
2	Cl	Ph	100 °C	1	32	13
3	Br	<i>p</i> -Tolyl	r.t	1	22	44
4	Cl	<i>p</i> -Tolyl	100 °C	4	42	22
5	F	<i>p</i> -Tolyl	100 °C	4	19	13
^{<i>a</i>} Reaction conditions: ArMgBr (0.6 mmol, 1.0 M in THF) was added dropwise within 30 min to the mixture of 3a (0.005 mmol, 1 mol%) and 4-bromoanisole (0.5 mmol) in toluene (1 mL) and stirred at r.t. for 1 h. ^{<i>b</i>} Isolated yield. ^{<i>c</i>} Based on the amount of ArMgBr.						

Table S1. Kumada-Tamo-Corriu reactions catalysed by 3a^a

Table S2. Oxidative homo-coupling of aryl Grignard reagent catalysed by $3a^a$

	ΔrM	aBr 3a (1 or 3 mol%) / THF	Ar-Ar	
		CICH ₂ CH ₂ CI		
.		Catalyst	Yield ^b of Ar-Ar	
Entry	Ar lo	loading/Temperature/Time	(%)	
1	<i>p</i> -Tolyl	1 mol% / r.t / 1h	49	
2	<i>p</i> -Tolyl	1 mol% / r.t / 4h	73	
3	<i>p</i> -Tolyl	1 mol% / reflux / 1h	64	
4	<i>p</i> -Tolyl	3 mol% / r.t / 1h	81	
5	2-Mesityl	3 mol% / r.t / 1h	45	

^{*a*}Reaction conditions: ArMgBr (0.5 mmol, 1.0 M in THF) was added to the mixture of **3a** (1 or 3 mol%) and 1,2-dichloroethane (0.62 mmol) in THF (2 mL). ^{*b*}Isolated yield.

IV. ¹H, ¹³C NMR data and spectra of the bibenzyl products

1,2-Di(4-trifluoromethylphenyl)ethane^[3] ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.57 (d, J = 8.2 Hz 4H), 7.28 (d, J = 8.2 Hz 4H), 3.03 (s, 4H). ¹³C NMR (125.77 MHz, CDCl₃): δ (ppm) = 145.01, 128.76, 128.47, 125.37 (q, J = 3.6 Hz), 123.19, 37.21.

1,2-Di(*4-cyanophenyl*)*ethane*^[4] ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.56 (d, J = 8.4 Hz 4H), 7.22 (d, J = 8.4 Hz 4H), 2.99 (s, 4H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 146.04, 132.27, 129.22, 118.79, 110.27, 37.16.

1,2-Di(2-bromophenyl)ethane^[1] ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.57 (d, *J* = 8.0 Hz 2H), 7.26-7.19 (m, 4H), 7.11-7.07 (m, 2H), 3.06 (s, 4H). ¹³C NMR (125.77 MHz, CDCl₃): δ (ppm) = 140.53, 132.77, 130.60, 127.80, 127.42, 124.46, 36.41.

1,2-Di(2-methylphenyl)ethane^[1] ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.19 (s, 8H), 2.90 (s, 4H), 2.36 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 140.14, 135.88, 130.17, 128.83, 126.08, 126.02, 34.11, 19.25.

1,2-Di(4-methylphenyl)ethane^[1] ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.10 (s, 8H), 2.87 (s, 4H), 2.33 (s, 6H). ¹³C NMR (125.77 MHz, CDCl₃): δ (ppm) = 138.86, 135.28, 128.99, 128.28, 37.62, 21.00.

Dimethyl 4,4'-(ethane-1,2'-diyl)dibenzoate^[6] ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.94 (d, J = 8.0 Hz 4H), 7.19 (d, J = 8.0 Hz 2H), 3.90 (s, 6H), 2.99 (s, 4H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 167.05, 146.48, 129.73, 128.51, 128.11, 51.99, 37.39.

V. Crystal data and structure refinement parameters of complexes **3a-3c**

Complex	3a	3b	3c
Chemical formula	$\mathrm{C_{16}H_{14}F_6N_3NiPS}$	$C_{18}H_{16}F_6N_3NiPS$	$C_{22}H_{18}F_6N_3NiPS$
Formula weight	484.04 g/mol	510.08 g/mol	560.13 g/mol
Temperature	100(2) K	100(2) K 0.100 x 0.120 x 0.600	100(2) K 0.200 x 0.260 x 0.460
Crystal size	0.090 x 0.130 x 0.210 mm	mm	mm
Crystal system	orthorhombic	monoclinic	orthorhombic
Space group	P n m a	P 1 21/c 1	Pbcn
a/Å	14.8278(7)	7.3234(13)	10.8112(12)
b/Å	6.9438(4)	18.776(3)	13.5233(15)
c/Å	17.7673(9)	13.938(2)	30.106(3)
α/°	90	90	90
β/°	90	90.253(4)	90
γ/°	90	90	90
$V/Å^3$	1829.34(16)	1916.5(6)	4401.6(9)
Ζ	4	4	8
Density (calculated)	1.758 g/cm^3	1.768 g/cm^3	1.691 g/cm^3
Reflections collected	17118	13566	54601
Independent reflections	2451	4434	5091
R _{int}	0.0406	0.0443	0.0596
Parameters	158	271	307
GOF on F ²	1.048	1.033	1.085
$R_1[I > 2\sigma(I)]$	0.0284	0.0397	0.0459
wR ₂ (all data)	0.0645	0.0985	0.1104

 Table S3. Crystal data and structure refinement for complexes 3a-3c

VI. References

- [1] K. Sato, Y. Inoue, T. Mori, A. Sakaue, A. Tarui, M. Omote, I. Kumadaki and A. Ando, Org. Lett., 2014, 16, 3756–3759.
- [2] Y.-L. Hu, F. Li, G.-L. Gu and M. Lu, Catal. Lett., 2011, 141, 467-473.
- [3] J. W. Hilborn, E. MacKnight, J. A. Pincock and P. J. Wedge, J. Am. Chem. Soc., 1994, 116, 3337-3346.
- [4] J. Liu and B. Li, Synth. Commun., 2007, 37, 3273-3278.
- [5] M. R. Prinsell, D. A. Everson and D. J. Weix, Chem. Commun., 2010, 46, 5743-5745.
- [6] H. Christensen, C. Schjøth-Eskesen, M. Jensen, S. Sinning and H. H. Jensen, *Chem. Eur. J.*, 2011, **17**, 10618–10627.