# Electronic Supplementary Information 

Iodosylbenzene and Iodylbenzene Adducts of Cerium(IV) Complexes Bearing Chelating Oxygen Ligands<br>Ka-Chun Au-Yeung, Yat-Ming So, Guo-Cang Wang, Herman H.-Y. Sung, Ian D. Williams and<br>Wa-Hung Leung*

## Contents

1. Synthesis of Ce complexes
2. Stoichiometric and catalytic oxidation of $p$-tolyl methylsulfide with $\mathrm{Ce}^{\mathrm{IV}}$ hypervalent iodine complexes
3. X-ray crystallographic data for complexes $\mathbf{1 , 2}$ and $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$
4. NMR and IR spectra

## Experimental

## General Considerations

All manipulations were carried out under nitrogen by standard Schlenk techniques. Solvents were purified by standard procedures and distilled before usage. NMR spectrum were recorded on a Bruker ARX 400 spectrometer operating at 400 and 162 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$, respectively. Chemical shifts ( $\delta$, ppm) were reported with reference to $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right), \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ $\left({ }^{19} \mathrm{~F}\right)$ and $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$, respectively. Gas chromatograms were obtained on a HP6850 Chromatograph equipped with a FID detector. Elemental analyses were performed by Medac Ltd, Surrey, UK. The compounds $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{Ce}^{\mathrm{IV}} \mathrm{Cl}_{2}\right]^{1},\left[\mathrm{Ce}^{\mathrm{IV}}{ }_{2}(\mu-\mathrm{O})\left\{\mathrm{N}\left(\mathrm{Pr}_{2}{ }_{2} \mathrm{PO}\right)_{2}\right\}_{4} \mathrm{Cl}_{2}\right]^{2}$, $\mathrm{PhIO}^{3}$, and $\mathrm{PhIO}_{2}{ }^{4}$ were prepared according to literature methods. All other reagents were purchased from standard commerical sources and used without further purification.

## Synthesis of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{Ce}^{\mathrm{IV}}\{\mathbf{O I}(\mathrm{Cl}) \mathrm{Ph}\}_{2}\right]$ (1)

To a solution of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{CeCl}_{2}\right](30 \mathrm{mg}, 0.024 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added $\mathrm{PhIO}(11$ $\mathrm{mg}, 0.05 \mathrm{mmol}$ ), and the mixture was stirred at room temperature until all the PhIO was dissolved (ca. 10 min ). The solvent was removed in vacuo, and the product was extracted with 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane ( $\mathrm{v} / \mathrm{v} 1: 3$ ). Slow evaporation of the solution gave single orange crystals suitable for X-ray structure determination. Yield: $36.3 \mathrm{mg}, 90 \%$. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}\right) \delta 1.22\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{CH}_{3}\right), 4.09\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 5.06(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 7.69$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right.$ of Ph$), 7.71-7.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ of Ph$), 8.22\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}_{\mathrm{o}}\right.$ of Ph$) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}, \quad 25{ }^{\circ} \mathrm{C}\right)$ : $\delta \quad 117.4$ (s). Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{CeCl}_{2} \mathrm{Co}_{2} \mathrm{I}_{2} \mathrm{O}_{20} \mathrm{P}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ : C, 31.25; H, 4.57. Found: C, 31.91; H, 4.56.

## Reaction of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{CeCl}_{2}\right]$ with 1 equivalent of PhIO

To a solution of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{CeCl}_{2}\right](30 \mathrm{mg}, 0.024 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added ca. 1
equivalent of $\mathrm{PhIO}(5.5 \mathrm{mg}, 0.025 \mathrm{mmol})$, and the mixture was stirred at room temperature until all the PhIO was dissolved (ca. 10 min ). The solvent was removed in vacuo, and the product was extracted with 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (v/v 1:3). Slow evaporation of the solution gave single orange crystals that were characterized as $\mathbf{1}$ by NMR spectroscopy and X-ray diffraction. Yield: $15 \mathrm{mg}, 38 \%$.

## Synthesis of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{Ce}^{\mathrm{IV}}\{\mathrm{OI}(\mathrm{OTs}) \mathrm{Ph}\}_{2}\right]$

To a solution of $\left[(\mathrm{LOEt})_{2} \mathrm{Ce}(\mathrm{OTs})_{2}\right](30 \mathrm{mg}, 0.019 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added ca. 2 equivalents of $\mathrm{PhIO}(8.50 \mathrm{mg}, 0.040 \mathrm{mmol})$, and the mixture was stirred at room temperature until all the PhIO were dissolved (ca. 30 min ). The solvent was removed in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF} /$ hexane ( $20 \mathrm{~mL}, \mathrm{v} / \mathrm{v} 1: 1: 1$ ). Slow evaporation of the solution gave orange crystals. Yield: $34.2 \mathrm{mg}, 89 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25{ }^{\circ} \mathrm{C}\right): \delta$ $1.17\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{CH}_{3}\right), \delta 2.34\left(\mathrm{~s}, 6 \mathrm{H}_{2} \mathrm{CH}_{3}\right) 4.04\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 5.10(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp})$, $7.15-7.18\left(\mathrm{~m}, 6 \mathrm{H}_{\mathrm{m}} \& \mathrm{H}_{\mathrm{p}}, \mathrm{Ph}\right), 7.37-7.41 \quad\left(\mathrm{~m}, 4 \mathrm{H}_{0}, \mathrm{Ph}\right), 7.70(\mathrm{dd}, 8 \mathrm{H}, \mathrm{Ph}, \mathrm{OTs}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, $\mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$ ): $\delta 120.1$ (s). IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 1139 [ $\left.v(\mathrm{~S}-\mathrm{O})\right]$. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{94} \mathrm{CeCo}_{2} \mathrm{I}_{2} \mathrm{O}_{26} \mathrm{P}_{6} \mathrm{~S}_{2}: \mathrm{C}, 36.16 ; \mathrm{H}, 4.75$. Found: C, $35.09 ; \mathrm{H}, 4.77$.

## Synthesis of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{Ce}^{\mathrm{IV}}\{\mathbf{O I}(\mathrm{OTf}) \mathrm{Ph}\}_{2}\right]$

To a solution of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{Ce}(\mathrm{OTf})_{2}\right](30 \mathrm{mg}, 0.020 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added ca. 2 equivalents of $\mathrm{PhIO}(8.74 \mathrm{mg}, 0.040 \mathrm{mmol})$, and the mixture was stirred at room temperature until all the PhIO were dissolved (ca. 30 min ). The solvent was removed in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF} /$ hexane ( $20 \mathrm{~mL}, \mathrm{v} / \mathrm{v} 1: 1: 1$ ). Slow evaporation of the solution gave orange crystals. Yield: $31.7 \mathrm{mg}, 82 \%{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25{ }^{\circ} \mathrm{C}$ ): $\delta$ $1.23\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{CH}_{3}\right), 4.06\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 5.16(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 7.18(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $\left.4 \mathrm{H}_{\mathrm{m}}, \mathrm{Ph}\right), 7.39\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{p}}, \mathrm{Ph}\right), 7.74\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}_{\mathrm{o}}, \mathrm{Ph}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(162$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$ ): $\delta 121.2 .{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$ ): $\delta-77.0(\mathrm{~s}) . \operatorname{IR}(\mathrm{KBr}$,
$\left.\mathrm{cm}^{-1}\right): 1269[v(\mathrm{~S}-\mathrm{O})]$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{CeCo}_{2} \mathrm{~F}_{6} \mathrm{I}_{2} \mathrm{O}_{26} \mathrm{P}_{6} \mathrm{~S}_{2}$ : C, $29.58 ; \mathrm{H}, 4.14$. Found: C, 29.67 ; H, 4.17.

## Synthesis of $\left[\mathrm{Ce}^{\mathrm{IV}}\{\mathrm{OI}(\mathrm{Cl}) \mathrm{Ph}\}\left\{\mathbf{N}\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{PO}\right)_{2}\right\}_{3}\right]$ (2)

To a solution of $\left[\mathrm{Ce}^{\mathrm{IV}}{ }_{2}(\mu-\mathrm{O})\left\{\mathrm{N}\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{PO}\right)_{2}\right\}_{4} \mathrm{Cl}_{2}\right](50 \mathrm{mg}, 0.034 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added $\mathrm{PhIO}(10 \mathrm{mg}, 0.046 \mathrm{mmol})$, and the mixture was stirred at room temperature until all the PhIO was dissolved (ca. 30 min ). The volatiles were removed in vacuo, and the product was extracted with 5 mL of hexanes. Concentration of the solution gave single orange crystals suitable for X-ray structure determination. Yield: $16.6 \mathrm{mg}, 40 \%{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta 1.19-1.24\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27-1.33\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{CH}_{3}\right), 1.97-2.08(\mathrm{~m}, 12 \mathrm{H}$, $\mathrm{CH}), 6.91\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{p}}, \mathrm{Ph}\right), 7.04\left(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}, \mathrm{Ph}\right), 8.47(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{0}, \mathrm{Ph}\right) .{ }^{31} \mathrm{P} \quad\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(62 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 49.49$ (s). Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{89} \mathrm{CeClIN}_{3} \mathrm{O}_{7} \mathrm{P}_{6}: \mathrm{C}, 40.80 ; \mathrm{H}, 7.25 ; \mathrm{N}, 3.4$. Found: C, $40.91 ; \mathrm{H}, 7.36 ; \mathrm{N}, 3.3$.

## Decomposition of 1 in $\mathrm{D}_{\mathbf{2}} \mathrm{O}$

The decomposition of $1(5 \mathrm{mg}, 0.0029 \mathrm{mmol})$ in $\mathrm{D}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ at room temperature was monitored by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. During the course of the reaction, the signals due to $\mathbf{1}$ dropped while the signals attributable to $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{CeCl}_{2}\right]$ appeared. Meanwhile, the insoluble PhIO polymer (yellowish-white solid) was precipitated out gradually. The signals of 1 disappeared in ca. 2 h .

## Reaction of 1 with $\mathbf{A g N O}_{3}$ or $\mathbf{N a N O}_{3}$

To a solution of $\mathbf{1}(50 \mathrm{mg}, 0.029 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added $\mathrm{AgNO}_{3}(10 \mathrm{mg}, 0.059$ $\mathrm{mmol})$ or $\mathrm{NaNO}_{3}(5 \mathrm{mg}, 0.059 \mathrm{mmol})$, and the mixture was stirred at room temperature for 30 min . The AgCl or NaCl formed was filtered off and the volatiles were removed in vacuo to give an orange solid. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes afforded red single crystals,
which were identified as the reported dinitrate compound $\left[\mathrm{Ce}\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot{ }^{6}$ Yield: 34 mg (88\%) for $\mathrm{AgNO}_{3}, 28.6 \mathrm{mg}$ (74\%) for $\mathrm{NaNO}_{3}$.

## Synthesis of $\left[\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2}\{\mathrm{OI}(\mathbf{O})(\mathbf{C l}) \mathbf{P h}\}_{2}\right] \cdot 0 \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right)$

To a solution of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{CeCl}_{2}\right](30 \mathrm{mg}, 0.024 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added ca. 2 equivalents of $\mathrm{PhIO}_{2}(11.8 \mathrm{mg}, 0.047 \mathrm{mmol})$, and the mixture was stirred at room temperature until all the $\mathrm{PhIO}_{2}$ were dissolved (ca. 30 min ). The solvent was removed in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF} /$ hexane ( $20 \mathrm{~mL}, \mathrm{v} / \mathrm{v} 1: 1: 1$ ). Slow evaporation of the solution gave orange single crystals suitable for X-ray structure determination. Yield: 36.3 $\mathrm{mg}, 87 \% .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25{ }^{\circ} \mathrm{C}$ ): $\delta 1.16\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{CH}_{3}\right), 4.01-4.10$ $\left(\mathrm{m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 5.08(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 7.57-7.65(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 8.28(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}) .{ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$ ): $\delta 116.3$ (s). IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3444 br . [v(O-H)]. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{CeCl}_{2} \mathrm{Co}_{2} \mathrm{I}_{2} \mathrm{O}_{22} \mathrm{P}_{6} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 31.44 ; \mathrm{H}, 4.61$. Found: C, $31.27 ; \mathrm{H}, 4.27$. Alternatively, $\mathbf{3}$ can be synthesized by the treatment of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{CeCl}_{2}\right](30 \mathrm{mg}, 0.024 \mathrm{mmol})$ with excess $\mathrm{PhIO}(22.4 \mathrm{mg}, 0.102 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min . The solvent was removed in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF} /$ hexane ( $20 \mathrm{~mL}, \mathrm{v} / \mathrm{v} 1: 1: 1$ ). Slow evaporation of the solution gave single orange crystals suitable for X-ray structure determination. Yield: $39.6 \mathrm{mg}, 97 \%$.

## Stoichiometric oxidation of $\mathbf{P P h}_{3}$ by $\mathbf{C e}{ }^{\text {IV }}$ hypervalent iodine complexes

To a solution of freshly prepared $\mathbf{1}$ or $\mathbf{2}(12.5 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{CN}(2 \mathrm{~mL})$ were added $\mathrm{PPh}_{3}$ (for 1: $6.6 \mathrm{mg}, 25 \mu \mathrm{~mol}$; for $2: 3.3 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$ ), and the mixture was stirred at room temperature for 5 min . NMR spectroscopy indicated that triphenylphosphine oxide $\left(\mathrm{O}=\mathrm{PPh}_{3}\right)$ quantitatively was produced almost quantitatively (ca. $200 \%$ and $100 \%$ for $\mathbf{1}$ and 2, respectively). Then the solvent was removed in vacuo and the residue was extracted with hexane. Slow evaporation of the hexane solution gave red or yellow crystals that were
characterized as the known compound $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{CeCl}_{2}\right]^{1}$ or $\left[\mathrm{Ce}^{\mathrm{IV}}\left\{\mathrm{N}\left(\mathrm{Pr}_{2}{ }_{2} \mathrm{PO}\right)_{2}\right\}_{3} \mathrm{Cl}\right]^{2}$.

## Stoichiometric oxidation of $\boldsymbol{p}$-tolyl methylsulfide by $\mathrm{Ce}^{\mathrm{IV}}$ hypervalent iodine complexes

To a solution of freshly prepared $\mathbf{1}$ or $\mathbf{3}(12.5 \mu \mathrm{~mol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ were added 4 equivalents of $p$-tolyl methylsulfide ( $6.7 \mu \mathrm{~L}, 50 \mu \mathrm{~mol}$ ), and the mixture was stirred at $40^{\circ} \mathrm{C}$. The progress of the reaction was monitored by GLC analysis. At a given time, an aliquot ( 0.5 mL ) was removed by a syringe, and filtered through a pad of celite, and the yield of product ( $p$-tolyl methylsulfide) was determined by GLC using bromobenzene as internal standard.

Table S1. Stoichiometric oxidation of $p$-tolyl methylsulfide by 1-3 ${ }^{\text {a }}$


${ }^{\text {a }}$ Experimental conditions: Ce complex ( $12.5 \mu \mathrm{~mol}$ ), p-tolyl methylsulfide ( $50 \mu \mathrm{~mol}$ ), $\mathrm{MeCN} \quad(5 \mathrm{~mL}), 40{ }^{\circ} \mathrm{C} .{ }^{\mathrm{b}} \mathrm{Ce}$ complexes: [ $\left.\mathrm{Ce}\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2}\{\mathrm{OI}(\mathrm{Cl}) \mathrm{Ph}\}_{2}\right] \quad$ (1), $\left[\mathrm{Ce}^{\mathrm{IV}}\left\{\mathrm{N}\left(\operatorname{Pr}^{i}{ }_{2} \mathrm{PO}\right)_{2}\right\}_{3}\{\mathrm{OI}(\mathrm{Cl}) \mathrm{Ph}\}\right](2),\left[\mathrm{Ce}\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2}\{\mathrm{OI}(\mathrm{Cl})(\mathrm{O}) \mathrm{Ph}\}_{2}\right]$ (3). ${ }^{\mathrm{c}}$ Yield relative to the Ce complex determined by GLC.

## Reaction of cyclooctene with $\mathrm{Ce}^{\mathrm{IV}}$ hypervalent iodine complexes

To a solution of freshly prepared $\mathbf{1}$ or $\mathbf{3}(12.5 \mu \mathrm{~mol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ were added cyclooctene ( $6.5 \mu \mathrm{~L}, 50 \mu \mathrm{~mol}$ ), and the mixture was stirred at $40^{\circ} \mathrm{C}$. The progress of the reaction was monitored by GLC analysis. At a given time, an aliquot $(0.5 \mathrm{~mL})$ was removed by a syringe, and filtered through a pad of celite, and the yield of product ( $p$-tolyl methylsulfide) was determined by GLC using bromobenzene as internal standard. No reaction was found between $\mathbf{1}$ and cyclooctene.

## Ce-catalyzed oxidation of $\boldsymbol{p}$-tolyl methylsulfide

To a solution of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{Ce}^{\mathrm{IV}} \mathrm{Cl}_{2}\right](3 \mathrm{mg}, 2.34 \mu \mathrm{~mol})$ and 20 equivalents of $\mathrm{PhIO}(10.4 \mathrm{mg}$, $47.3 \mu \mathrm{~mol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ were added 10 equivalents of $p$-tolyl methylsulfide ( $6.4 \mu \mathrm{~L}$, $47.6 \mu \mathrm{~mol}$ ), and the mixture was stirred at $40^{\circ} \mathrm{C}$ for ca. 15 min . The solvent was removed by a rotavapor, and the residue was extracted with MeCN and filtered through a celite pad. The product was determined by GLC analysis using bromobenzene as the internal standard.

## NMR monitoring of the Ce-catalyzed oxidation of $\boldsymbol{p}$-tolyl methylsulfide

To a solution of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{Ce}^{\mathrm{IV}} \mathrm{Cl}_{2}\right](10 \mathrm{mg}, 7.81 \mu \mathrm{~mol})$ and 10 equivalents of $p$-tolyl methylsulfide $(10.7 \mu \mathrm{~L}, 78.2 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{CN}(1 \mathrm{~mL})$ were added 10 equivalents of PhIO (17.2 mg, $78.2 \mu \mathrm{~mol}$ ), and the mixture was stirred at $40{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the mixture at $0,5,10$ and 15 min after the addition of PhIO were recorded.

## References

1. Y.-M. So, G.-C. Wang, Y. Li, H. H.-Y. Sung, I. D. Williams, Z. Lin and W.-H. Leung, Angew. Chem. Int. Ed., 2014, 53, 1626.
2. G.-C. Wang, H. H.-Y. Sung, I. D. Williams and W.-H. Leung, Inorg. Chem., 2012, 51, 3640.
3. H. J. Lucas and E. R. Kennedy, Org. Synth., 1943, coll. vol. 2, 351.
4. H. J. Lucas and E. R. Kennedy, Org. Synth., 1939, 19, 55.
5. V. V. Zhdankin, Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley \& Sons, 2014.
6. Y.-X. Yi, T. C.-H. Lam, I. D. Williams and W.-H. Leung, Inorg. Chem., 2010, 49, 2232.

## NMR monitoring of the Ce-catalysed oxidation of $\boldsymbol{p}$-tolyl methylsulfide with PhIO

${ }^{1} \mathrm{H}$ (left) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR spectra of a mixture of $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{CeCl}_{2}\right]$ and $p$-tolyl methylsufide ( 10 equiv.) in $\mathrm{CD}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ at $0,5,10$ and 15 min after the addition of PhIO (10 equiv.). The signals due to $\left[\left(\mathrm{L}_{\mathrm{OEt}}\right)_{2} \mathrm{CeCl}_{2}\right], \mathbf{1}$ and $\mathbf{3}$ are indicated by $\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$, respectively. The ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ signals of $\left(\mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{SCH}_{3}$, $\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{SC}_{3} \underline{H}_{3}$, $\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{S}(\mathrm{O}) \mathrm{CH}_{3},\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{S}(\mathrm{O}) \mathrm{C}_{3}$ are indicated by $\mathbf{d}, \mathbf{e}, \mathbf{d}$ ' and $\mathbf{e}^{\prime}$, respectively.

$t=5 \mathrm{~min}$


## $t=10 \mathrm{~min}$



## $t=15 \mathrm{~min}$



## 2. X-ray Crystallography

Crystallographic data and refinement details for complexes 1, 2 and $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ are listed in Table S1. The diffraction intensity data of $\mathbf{1}$ and $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ were collected with a Rigaku SuperNova Atlas X-ray Diffractometer with monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ( $\lambda=0.71073$ $\AA$ ) at 100 K . The diffraction intensity data of $\mathbf{2}$ was collected with a Rigaku Gemini ${ }^{\text {TM }}$ S Ultra X-ray Diffractometer with monochromatized $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA)$ at 100 K . Diffraction data of $\mathbf{1 , 2}$ and $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ were collected and processed using the CrysAlisPro software (Rigaku, 2012). Empirical absorption corrections were performed using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm in the CrysAlisPro software suite. Structure solution and refinement for all complexes were performed using the Olex2 software package ${ }^{1}$ (which embedded SHELXTL ${ }^{2}$ ). All the structures were solved by direct methods, expanded by difference Fourier syntheses and refined by full matrix leastsquares on $F^{2}$. All non-hydrogen atoms were refined anisotropically with a riding model for the hydrogen atoms except noted separately. All the pictures of molecules were made using XP implemented in SHELXTL. ${ }^{2}$ CCDC 1451299, 1432570 and 1432572 contain the supplementary crystallography data for complexes $\mathbf{1 , 2}$ and $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif

## References

1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339. OLEX2: A complete structure solution, refinement and analysis program.
2. G. M. Sheldrick, Acta Cryst. 2008, A64, 112.

Table S2. Crystallographic data and refinement details for complexes 1, 2 and $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$.

|  | 1 | 2 | 3.0.2 $\mathrm{H}_{2} \mathrm{O}$ |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{47} \mathrm{H}_{82} \mathrm{CeCl}_{4} \mathrm{Co}_{2} \mathrm{I}_{2} \mathrm{O}_{20} \mathrm{P}_{6}$ | $\mathrm{C}_{42} \mathrm{H}_{89} \mathrm{CeClIN}_{3} \mathrm{O}_{7} \mathrm{P}_{6}$ | $\mathrm{C}_{46} \mathrm{H}_{80.4} \mathrm{CeCl}_{2} \mathrm{Co}_{2} \mathrm{I}_{2} \mathrm{O}_{22.2} \mathrm{P}_{6}$ |
| $F_{\text {w }}$ | 1806.52 | 1236.45 | 1757.20 |
| Crystal system | Monoclinic | Monoclinic | Monoclinic |
| Space group | P2/c | Cc | Pr |
| $a(\AA)$ | 24.8983(5) | 21.8270(2) | 12.0266(4) |
| $b(\AA)$ | 12.6591(2) | 12.71458(13) | 12.5297(4) |
| $c(\AA)$ | 44.0778(11) | 20.51840(19) | 21.8315(6) |
| $\alpha\left({ }^{\circ}\right)$ | 90 | 90 | 90 |
| $\beta\left({ }^{\circ}\right.$ ) | 104.574(2) | 93.3517(8) | 90.136(2) |
| $\gamma\left({ }^{\circ}\right)$ | 90 | 90 | 90 |
| $V\left(\AA^{3}\right)$ | 13445.9(5) | 5684.56(9) | 3289.77(18) |
| Z | 8 | 4 | 2 |
| $\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-1}\right)$ | 1.785 | 1.445 | 1.774 |
| $T(\mathrm{~K})$ | 100 | 100 | 100 |
| $F(000)$ | 7200 | 2544 | 1752 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 2.439 | 12.835 | 2.413 |
| No. of reflns | 78576 | 11724 | 25725 |
| No. of indep reflns | 26365 | 7434 | 13080 |
| $R_{\text {int }}$ | 0.0849 | 0.0850 | 0.0396 |
| $\mathrm{GoF}^{a}$ | 1.004 | 1.003 | 1.001 |
| $R_{1}{ }^{\mathrm{b}}, \mathrm{w} R_{2}{ }^{\mathrm{c}}(\mathrm{I}>2 \sigma(\mathrm{I}))$ | 0.0579, 0.1063 | 0.0582, 0.1058 | 0.0361, 0.0542 |
| $R_{1}, \mathrm{w} R_{2}$ (all data) | 0.1082, 0.1265 | 0.1086, 0.1258 | 0.0457, 0.0571 |

${ }^{\mathrm{a}} R 1=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| .{ }^{\mathrm{b}} w R 2=\left[\Sigma w\left(\left|F_{\mathrm{o}}{ }^{2}\right|-\left|F_{\mathrm{c}}{ }^{2}\right|\right)^{2 / \Sigma} w\left|F_{\mathrm{o}}{ }^{2}\right|^{2}\right]^{1 / 2} .{ }^{\mathrm{c}} \mathrm{GoF}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2 /( }\left(N_{\mathrm{obs}}-N_{\text {param }}\right)\right]^{1 / 2}$.

Figure S1. Molecular structure of 1. Hydrogen atoms are omitted for clarity. The ellipsoids are drawn at $30 \%$ probability level.


Table S3. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1}$.

| $\mathrm{Ce}(1)-\mathrm{O}(7)$ | $2.446(4)$ | $\mathrm{I}(1)-\mathrm{Cl}(1)$ | $2.8195(18)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ce}(1)-\mathrm{O}(8)$ | $2.360(5)$ | $\mathrm{I}(1)-\mathrm{O}(10)$ | $1.918(4)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(9)$ | $2.370(4)$ | $\mathrm{I}(1)-\mathrm{C}(51)$ | $2.124(8)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(17)$ | $2.345(5)$ | $\mathrm{I}(2)-\mathrm{Cl}(2)$ | $2.718(2)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(18)$ | $2.352(4)$ | $\mathrm{I}(2)-\mathrm{O}(20)$ | $1.950(4)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(19)$ | $2.411(4)$ | $\mathrm{I}(2)-\mathrm{C}(61)$ | $2.109(8)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(10)$ | $2.262(5)$ |  |  |
| $\mathrm{Ce}(1)-\mathrm{O}(20)$ | $2.202(5)$ |  | $177.63(15)$ |
|  |  |  |  |
| $\mathrm{O}(10)-\mathrm{I}(1)-\mathrm{Cl}(1)$ | $175.91(15)$ | $\mathrm{O}(20)-\mathrm{I}(2)-\mathrm{Cl}(2)$ | $91.6(2)$ |
| $\mathrm{O}(10)-\mathrm{I}(1)-\mathrm{C}(51)$ | $92.3(2)$ | $\mathrm{O}(20)-\mathrm{I}(2)-\mathrm{C}(61)$ | $86.1(2)$ |
| $\mathrm{C}(51)-\mathrm{I}(1)-\mathrm{C}(11)$ | $89.39(19)$ | $\mathrm{O}(22)-\mathrm{I}(2)-\mathrm{Cl}(2)$ | $129.4(2)$ |
| $\mathrm{I}(1)-\mathrm{O}(10)-\mathrm{Ce}(1)$ | $122.1(2)$ | $\mathrm{I}(2)-\mathrm{O}(20)-\mathrm{Ce}(1)$ |  |
| $\mathrm{O}(20)-\mathrm{Ce}(1)-\mathrm{O}(10)$ | $83.17(18)$ |  |  |

Figure S2. Molecular structure of 2. Hydrogen atoms are omitted for clarity. The ellipsoids are drawn at $30 \%$ probability level.


Table S4. Selected bond lengths $\left[\AA\right.$ ] and angles [ ${ }^{\circ}$ ] for 2

| $\mathrm{Ce}(1)-\mathrm{O}(1)$ | $2.383(2)$ | $\mathrm{Ce}(1)-\mathrm{O}(4)$ | $2.294(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ce}(1)-\mathrm{O}(2)$ | $2.299(2)$ | $\mathrm{Ce}(1)-\mathrm{O}(5)$ | $2.288(2)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(3)$ | $2.299(2)$ | $\mathrm{Ce}(1)-\mathrm{O}(6)$ | $2.296(2)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(7)$ | $2.171(2)$ | $\mathrm{I}(1)-\mathrm{O}(7)$ | $1.966(2)$ |
| $\mathrm{I}(1)-\mathrm{Cl}(1)$ | $2.6711(10)$ | $\mathrm{I}(1)-\mathrm{C}(60)$ | $2.135(4)$ |
|  |  |  |  |
| $\mathrm{I}(1)-\mathrm{O}(7)-\mathrm{Ce}(1)$ | $124.92(12)$ | $\mathrm{O}(7)-\mathrm{I}(1)-\mathrm{Cl}(1)$ | $177.93(8)$ |
| $\mathrm{O}(7)-\mathrm{I}(1)-\mathrm{C}(60)$ | $90.64(13)$ | $\mathrm{C}(60)-\mathrm{I}(1)-\mathrm{Cl}(1)$ | $89.22(11)$ |

Figure S3. Molecular structure of $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$. Hydrogen atoms and Ethoxy groups on $\mathrm{L}_{\mathrm{OEt}}{ }^{-}$ and the co-crystallized $\mathrm{H}_{2} \mathrm{O}$ molecule are omitted for clarity. The ellipsoids are drawn at $30 \%$ probability level.


Table S5. Selected bond lengths $\left[\AA\right.$ ] and angles [ ${ }^{\circ}$ ] for $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$.

| $\mathrm{Ce}(1)-\mathrm{O}(7)$ | $2.313(5)$ | $\mathrm{I}(1)-\mathrm{Cl}(1)$ | $2.742(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ce}(1)-\mathrm{O}(8)$ | $2.308(5)$ | $\mathrm{I}(1)-\mathrm{O}(10)$ | $1.888(5)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(9)$ | $2.415(4)$ | $\mathrm{I}(1)-\mathrm{O}(21)$ | $1.793(5)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(10)$ | $2.265(5)$ | $\mathrm{I}(1)-\mathrm{C}(51)$ | $2.124(7)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(17)$ | $2.304(4)$ | $\mathrm{I}(2)-\mathrm{Cl}(2)$ | $2.765(2)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(18)$ | $2.442(5)$ | $\mathrm{I}(2)-\mathrm{O}(20)$ | $1.853(4)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(19)$ | $2.314(5)$ | $\mathrm{I}(2)-\mathrm{O}(22)$ | $1.794(5)$ |
| $\mathrm{Ce}(1)-\mathrm{O}(20)$ | $2.338(5)$ | $\mathrm{I}(2)-\mathrm{C}(61)$ | $2.105(8)$ |
| $\mathrm{I}(2)-\mathrm{O}(22) \cdots \mathrm{I}(1)$ | $2.734(5)$ |  |  |
| $\mathrm{I}(1)-\mathrm{O}(10)-\mathrm{Ce}(1)$ | $128.6(2)$ | $\mathrm{I}(2)-\mathrm{O}(20)-\mathrm{Ce}(1)$ | $121.2(2)$ |
| $\mathrm{O}(10)-\mathrm{I}(1)-\mathrm{Cl}(1)$ | $167.41(16)$ | $\mathrm{O}(20)-\mathrm{I}(2)-\mathrm{Cl}(2)$ | $170.37(15)$ |
| $\mathrm{O}(10)-\mathrm{I}(1)-\mathrm{C}(51)$ | $89.7(2)$ | $\mathrm{O}(20)-\mathrm{I}(2)-\mathrm{C}(61)$ | $91.6(3)$ |
| $\mathrm{O}(21)-\mathrm{I}(1)-\mathrm{Cl}(1)$ | $93.33(18)$ | $\mathrm{O}(22)-\mathrm{I}(2)-\mathrm{Cl}(2)$ | $88.86(16)$ |
| $\mathrm{O}(21)-\mathrm{I}(1)-\mathrm{O}(10)$ | $98.2(2)$ | $\mathrm{O}(22)-\mathrm{I}(2)-\mathrm{O}(20)$ | $100.4(2)$ |
| $\mathrm{O}(21)-\mathrm{I}(1)-\mathrm{C}(51)$ | $96.8(3)$ | $\mathrm{O}(22)-\mathrm{I}(2)-\mathrm{C}(61)$ | $96.9(3)$ |
| $\mathrm{C}(51)-\mathrm{I}(1)-\mathrm{Cl}(1)$ | $84.0(2)$ | $\mathrm{C}(61)-\mathrm{I}(2)-\mathrm{Cl}(2)$ | $84.6(2)$ |
| $\mathrm{O}(10)-\mathrm{Ce}(1)-\mathrm{O}(20)$ | $79.02(17)$ | $\mathrm{I}(2)-\mathrm{O}(22)-\mathrm{I}(1)$ | $113.9(2)$ |

3. NMR and IR Spectra


Figure S4. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$ ) spectrum of $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{CN}$.


Figure S5. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, 25^{\circ} \mathrm{C}$ ) spectrum of $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{CN}$.


Figure S6. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$ ) spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.


Figure S7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$ spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.


Figure S8. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CD}_{3} \mathrm{CN}$.


Figure S9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CD}_{3} \mathrm{CN}$.


Figure S10. IR (KBr) spectrum (400-4000 $\mathrm{cm}^{-1}$ region) of $\mathbf{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$.

