Photocurrent-generating properties of bulk and few-layered Cd(II) coordination polymers based on a rigid dicarboxylate ligand

Peng Gang Jiang, *a* Pan Zhang, *a* Yun Gong **a* and Jian Hua Lin**a*, *b*

^a Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China Tel: +86-023-65106150 Email:gongyun7211@cqu.edu.cn

^b State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China Tel: +86-010-62753541 E-mail: jhlin@pku.edu.cn

CP 1			
Cd(1)-O(5)	2.114(9)	Cd(1)-O(1)	2.304(9)
Cd(1)-O(3)#1	2.206(12)	Cd(2)-O(4)#1	2.200(10)
Cd(2)-O(2)	2.379(9)	Cd(2)-O(7)	2.301(13)
Cd(2)-O(8)	2.375(17)	Cd(2)-O(1)	2.358(8)
O(5)#2-Cd(1)-O(5)	180.0(7)	O(5)#2-Cd(1)-O(1)	86.2(4)
O(5)-Cd(1)-O(3)#1	92.2(4)	O(3)#1-Cd(1)-O(1)	87.7(4)
O(6)-Cd(2)-O(8)	167.7(5)	O(1)-Cd(2)-O(2)	54.9(3)
O(6)-Cd(2)-O(1)	97.3(3)	O(7)-Cd(2)-O(8)	83.4(7)
O(4)#1-Cd(2)-O(2)	156.6(4)	O(4)#1-Cd(2)-O(1)	105.3(3)
<i>CP 2</i>			
Cd(1)-O(5)	2.244(9)	Cd(1)-O(2)	2.286(9)

 Table S1 Selected bond lengths (Å) and angles (°) for CPs 1 and 2

Cd(1)-O(3)#2	2.546(9)	Cd(1)-O(1)	2.496(9)
Cd(1)-O(4)#2	2.304(9)	Cd(1)-O(3)#3	2.391(9)
O(2)-Cd(1)-O(1)	54.3(3)	O(1)-Cd(1)-O(3)#2	176.7(3)
O(5)-Cd(1)-O(2)	137.8(4)	O(4)#2-Cd(1)-O(3)#3	85.7(3)
O(4)#2-Cd(1)-O(1)	129.6(3)	O(2)-Cd(1)-O(3)#3	104.7(3)

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2, -y-1/2, z-1/2 #2 -x+1, -y, -z #3 -x+1/2, -y, z+1/2

(a)

(b)

Fig. S1 2D architecture constructed by Cd(II) ions and L²⁻ ligands (H atoms and uncoordinated DMF molecules omitted for clarity) (**a**, **b**); Schematic illustrating the stacking mode of different 2D layers in CP 2 (sapphire nodes, Cd(II); green, tetradentate L^{2-}) (**c**).

(**c**)

Fig. S2 SEM images of few-layered CP 2 via physical exfoliation (a); via in situ

synthesis in the presence of PVP, PVP/ligand = 1: 100 (**b**); PVP/ligand = 1: 200 (**c**); in the presence of PEG 6000, PEG/ligand = 1:60 (**d**).

Fig. S3 The powder XRD patterns of CPs 1 (a) and 2 (b).

(c)

Fig. S4 Low- (**a**), high-magnification TEM images (**b**) and selected area electron diffraction (SAED) (**c**) of the few-layered CP **2**.

Fig. S5 CVs of the bare GCE in an aqueous solution buffered to neutral pH (pH = 6.8, H₃PO₄/NaOH, 0.05 M) at different sweep rates.

Fig. S6 CVs of H_2L -GCE in an aqueous solution buffered to neutral pH (pH = 6.8, $H_3PO_4/NaOH$, 0.05 M) at different sweep rates.

Fig. S7 CVs of 1-GCE in an aqueous solution buffered to neutral pH (pH = 6.8, H₃PO₄/NaOH, 0.05 M) at different sweep rates.

Fig. S8 CVs of 2-GCE in an aqueous solution buffered to neutral pH (pH = 6.8, H₃PO₄/NaOH, 0.05 M) at different sweep rates.

Fig. S9 CVs of the few-layered CP 2-modified GCE in an aqueous solution buffered to neutral pH (pH = 6.8, H₃PO₄/NaOH, 0.05 M) at different sweep rates.

Fig. S10 UV-vis absorption spectra for bulk CPs 1-2 and H_2L in the solid state.

Fig. S11 The diffuse reflectance spectra of H_2L , bulk CPs 1 and 2 in Kubelka–Munk functions.

The diffuse reflectance spectra of H_2L and CPs 1-2 are shown in Fig. S11. The correlation between the absorption coefficient of allowed indirect semiconductor and optical band gap E_{gap} can be determined by the equation

$$\alpha E \approx A_1 (E - E_{gap})^2 \tag{1}$$

where E = hv is the photon energy, A₁ is a constant.

F(R) is the Kubelka–Munk equation, which is expressed as

$$F(R) = (1-R)^2 / 2R = k / s$$
 (2)

where R is the experimentally observed reflectance of the sample, k is the molar absorption coefficient, and s is the scattering coefficient. The scattering coefficients are weakly dependent on the wavelength of the incident light, and using eqs 1 and 2, the following eq 3 can be obtained:

$$[hvF(R)]^{1/2} = A_2[hv-E_{gap}]$$
 (3)

From the plot of $[hvF(R)]^{1/2}$ versus hv, by extrapolating the linear fitted regions to $[hvF(R)]^{1/2}=0$, the value of optical band gaps E_{gap} of H_2L and CPs 1-2 are ca. 2.5, 1.7 and 2.8 eV, respectively.

Fig. S12 Solid-state emission spectra at room temperature for H_2L and CPs 1-2 (slit width = 10 nm).

(b)

Fig. S13 Bode plots (log of impedance magnitude vs. log f) (a) and Nyquist plots (Z' vs. -Z'') (b) of the three-electrode systems at E = 0 V vs Ag/AgCl in aqueous phosphate solution (0.05 M, pH = 6.8) in the absence and presence of visible light illumination ($\lambda > 400$ nm) with 1-FTO and H₂L-FTO as working electrodes, respectively.

Fig. S14 Mott–Schottky curves of H₂L-FTO and 1-FTO (ac amplitude: 5 mV, frequency: 1000 Hz) in the absence and presence of visible light illumination ($\lambda > 400$ nm).

(b)

Fig. S15 Bode plots (log of impedance magnitude vs. log f) (a) and Nyquist plots (Z' vs. -Z'') (b) of the three-electrode systems at E = 0 V vs Ag/AgCl in aqueous phosphate solution (0.05 M, pH = 6.8) in the presence of visible light illumination ($\lambda > 400$ nm) with 2-FTO and the few-layered CP 2-modified FTO as working electrodes, respectively.

Fig. S16 Mott–Schottky curves of **2-FTO** and the few-layered CP **2**-modified **FTO** (ac amplitude: 5 mV, frequency: 1000 Hz) in the absence of visible light illumination.

Fig. S17 Thermogravimetric curves of CPs 1 and 2.