Lanthanum Complexes Containing a Bis(phenolate) Ligand with a Ferrocenediyl-1,1'-dithio Backbone: Synthesis, Characterization, and Ringopening Polymerization of *rac*-Lactide

Catherine Hermans, Weifeng Rong, Thomas P. Spaniol and Jun Okuda*

*Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany. E-mail: jun.okuda@ac.rwth-aachen.de

Table of Contents

1. NMR Spectra of Complex [(L)LaN(SiMe₃)₂] (1)

Fig. S1 ¹H NMR spectrum (C_6D_6 , 400 MHz) of complex **1**.

Fig. S2 13 C { 1 H} NMR spectrum (C₆D₆, 101 MHz) of complex **1**.

Fig. S3 29 Si { 1 H} NMR spectrum (C₆D₆, 79.5 MHz) of complex 1.

Fig. S4 Homonuclear correlation spectroscopy (COSY) of complex 1 (in C₆D₆).

Fig. S5 1 H- 13 C Heteronuclear single quantum correlation (HSQC) experiment of complex 1 (in C₆D₆).

2. NMR Spectra of Complex [(L)LaOⁱPr] (2)

Fig. S6 ¹H NMR spectrum (C_6D_6 , 400 MHz) of complex **2**.

Fig. S7 ¹³C {¹H} NMR spectrum (C_6D_6 , 101 MHz) of complex **2**.

Fig.S8 Homonuclear correlation spectroscopy (COSY) of complex 2 (in C₆D₆, containing toluene residue).

Fig. S9 ¹H-¹³C Heteronuclear single quantum correlation (HSQC) experiment of complex 2 (in C₆D₆, containing toluene residue).

3. NMR Spectra of Complex [(L)LaBH₄] (3)

Fig. S10 ¹H NMR spectrum (C_6D_6 , 400 MHz) of complex **3**.

Fig. S11 ^{13}C { $^{1}H\}$ NMR spectrum (C₆D₆, 101 MHz) of complex 3.

Fig. S12 ^{11}B { ^{1}H NMR spectrum (C_6D_6, 128.4 MHz) of complex 3.

Fig. S13 Homonuclear correlation spectroscopy (COSY) of complex 3 (in C₆D₆, containing toluene residue).

Fig. S14¹H-¹³C Heteronuclear single quantum correlation (HSQC) experiment of complex 3 (in C₆D₆, containing toluene residue).

4. Polymerization Kinetics

Fig. S15 First-order kinetic plot for the polymerization of *rac*-LA in THF at 25 °C with complex 1 as initiator.
Fig. S16 First-order kinetic plot for the polymerization of *rac*-LA in THF at 25 °C with complex 2 as initiator.
Fig. S17 First-order kinetic plots for the polymerization of *rac*-LA in THF at 60 °C with complex 3 as initiator.

5. Polymer analysis

Fig. S18 ¹H {¹H} NMR spectrum of PLA. (sample Table 2, Entry 6) in CDCl₃.
Fig. S19 GPC chromatogram of PLA (sample Table 2, Entry 10).
Fig. S20 GPC chromatogram of PCL (sample Table 2, Entry 17).

6. Redox Reactions

Fig. S21 ¹H NMR spectrum (400 MHz) of complex 2 after adding one equivalent of FcBAr^F in THF-*d*₈. Fig. S22 ¹³C {¹H} NMR spectrum (400 MHz) of complex 2 after adding one equivalent of FcBAr^F in THF-*d*₈. Fig. S23 ¹¹B {¹H} NMR spectrum (400 MHz) of complex 2 after adding one equivalent of FcBAr^F in THF-*d*₈. Fig. S24 ¹⁹F {¹H} NMR spectrum (400 MHz) of complex 2 after adding one equivalent of FcBAr^F in THF-*d*₈. Fig. S25 ¹H NMR spectrum (400 MHz) of complex 3 after adding one equivalent of FcBAr^F in THF-*d*₈. Fig. S26 ¹³C {¹H} NMR spectrum (400 MHz) of complex 3 after adding one equivalent of FcBAr^F in THF-*d*₈. Fig. S26 ¹³C {¹H} NMR spectrum (400 MHz) of complex 3 after adding one equivalent of FcBAr^F in THF-*d*₈. Fig. S27 ¹¹B {¹H} NMR spectrum (400 MHz) of complex 3 after adding one equivalent of FcBAr^F in THF-*d*₈. Fig. S28 ¹⁹F {¹H} NMR spectrum (400 MHz) of complex 3 after adding one equivalent of FcBAr^F in THF-*d*₈.

7. Crystallography

Table S1 Crystallographic data and structure refinement details for complex 1

8. Cyclic Voltammograms

Fig S29a-c Cyclic voltammogram of LH₂.
Fig. S30a-c Cyclic voltammogram of 1.
Fig. S31a-c Cyclic voltammogram of 2.
Fig. S32a-c Cyclic voltammogram of 3.

9. References

1. NMR Spectra of Complex [(L)LaN(SiMe₃)₂] (1)

Fig. S1 1 H NMR spectrum (C₆D₆, 400 MHz) of complex [(L)LaN(SiMe₃)₂] (1).

Fig. S2 $^{13}\text{C}\left\{^{1}\text{H}\right\}$ NMR spectrum (C₆D₆, 101 MHz) of complex 1.

Fig. S3 $^{29}\text{Si}\ \{^1\text{H}\}$ NMR spectrum (C6D6, 79.5 MHz) of complex 1.

Fig. S5 1 H- 13 C Heteronuclear single quantum correlation (HSQC) experiment of complex 1 (in C₆D₆).

2. NMR Spectra of Complex [(L)LaOⁱPr] (2)

Fig.S8 Homonuclear correlation spectroscopy (COSY) of complex 2 (in C_6D_{6r} , containing toluene residue).

Fig. S9 ¹H-¹³C Heteronuclear single quantum correlation (HSQC) experiment of complex 2 (in C₆D₆, containing toluene residue).

3. NMR Spectra of Complex [(L)LaBH₄] (3)

Fig. S10¹H NMR spectrum (C₆D₆, 400 MHz) of complex [(L)LaBH₄] (3).

Fig. S11 $^{13}C{^{1}H}$ NMR spectrum (C₆D₆, 101 MHz) of complex 3.

Fig. S12 ^{11}B { ^{1}H } NMR spectrum (C₆D₆, 128.4 MHz) of complex 3.

Fig. S13 Homonuclear correlation spectroscopy (COSY) of complex 3 (in C₆D₆, containing toluene residue).

Fig. S14 1 H- 13 C Heteronuclear single quantum correlation (HSQC) experiment of complex 3 (in C₆D₆, containing toluene residue).

4. Polymerization Kinetics

Fig. S15 First-order kinetic plot for the polymerization of *rac*-LA in THF at 25 °C with complex **1** as initiator (THF = 6 mL, $[M]_0$ = 0.5 M, [I] = 0.833 mM, $k_{app} = 0.032 \text{ min}^{-1}$).

Fig. S16 First-order kinetic plot for the polymerization of *rac*-LA in THF at 25 °C with complex **2** as initiator (THF = 6 mL, $[M]_0$ = 0.5 M, [I] = 0.833 mM, k_{app} = 0.036 min⁻¹).

Fig. S17 First-order kinetic plots for the polymerization of *rac*-LA in THF at 60 °C with complex **3** as initiator (triangle: THF = 2 mL, $[M]_0 = 1 M$, [I] = 5 mM, $k_{app} = 0.022 min^{-1}$; square: THF = 4 mL, $[M]_0 = 0.5 M$, [I] = 2.5 mM, $k_{app} = 0.011 min^{-1}$).

5. Polymerization Kinetics

Fig. S18 ^1H { $^1\text{H}\}$ NMR spectrum of PLA (sample Table 2, Entry 6) in CDCl_3.

Molar mass [Da]

Probe :	Vial 2: WR/518/4 - 1		
Integration von :	Dienstag 19.05.15 10:16:04		21.236 ml
Integration bis :	Dienstag 19.05.15 10:23:27		28.821 ml
Kalibration :	thf20132406.CAL	Eluent :	THE
MHK - A (Kal.):	1.000E+0	MHK - K (Kal.):	0.000E+0 ml/g
Int.StandK :	37.250 ml	Int.StandM :	36.300 ml
Pumpe :	PSS SECcurity	Flußrate :	1.000 ml/min
Konzentration :	0.000 g/l	Injektvolumen :	20.000 ul
Säule 1 :	PSS SDV 5µm	Temperatur :	25.000 °C
Säule 2 :	PSS SDV 5µm	Temperatur :	25.000 °C
Säule 3 :	PSS SDV 5µm	Temperatur :	25.000 °C
Detektor 1 :	I1: RID 1, RI Signal	Versatz :	0.217 ml
Detektor 2 :	I1: VWD 1, Signal A	Versatz :	0.000 ml
Operateur :	mpaul	Messintervall :	1.000 sec

	11: RID 1	, RI Signal	11: VWD	1, Signal A	
		Unsicherheit [%]	Unsicherheit [%]	
Mn :	2.5153e4	11.92	1.3036e4	n/v	g/mol
Mw :	3.4830e4	11.92	2.9148e4	n/v	g/mol
Mz:	4.4841e4	11.92	5.5166e4	n/v	g/mol
Mv:	3.4830e4	11.92	2.9148e4	n/v	g/mol
D :	1.3848e0	16.85	2.2359e0	n/v	
[n]:	0.000000	11.92	0.000000	n/v	ml/g
Vp:	2.4166e1	11.92	2.5141e1	n/v	ml
Mp:	3.5493e4	11.92	2.1440e4	n/v	g/mol
FI:	7.2417e3	11.92	1.0091e0	n/v	ml*V
< 3340	0.00	11.92	0.00	n/v	
w%:	100.00	11.92	100.00	n/v	
> 16602	0.00	11.92	0.00	n/v	

Projekt : Datum : C:\GPC-Daten\Installation.LDX Montag 29.02.16 14:48:33 Kostenstelle : Zeichen :

Fig. S19 GPC chromatogram of PLA (sample Table 2, Entry 10).

Molar mass [Da]

Probe :	Vial 1: WR/513/1 - 1		
Integration von :	Montag 18.05.15 09:45:4	0	21.712 ml
Integration bis :	Montag 18.05.15 09:53:1	5	29.484 ml
Kalibration :	thf20132406.CAL	Eluent :	THE
MHK - A (Kal.):	1.000E+0	MHK - K (Kal.):	0.000E+0 ml/g
Int.StandK :	37.250 ml	Int.StandM :	36.284 ml
Pumpe :	PSS SECcurity	Flußrate :	1.000 ml/min
Konzentration :	0.000 g/l	Injektvolumen :	20.000 ul
Säule 1 :	PSS SDV 5µm	Temperatur :	25.000 °C
Säule 2 :	PSS SDV 5µm	Temperatur :	25.000 °C
Säule 3 :	PSS SDV 5um	Temperatur :	25.000 °C
Detektor 1 :	11: RID 1, RI Signal	Versatz :	0.217 ml
Detektor 2 :	11: VWD 1, Signal A	Versatz :	0.000 ml
Operateur :	mpaul	Messintervall :	1.000 sec

	11: RID 1	, RI Signal	I1: VWD	1, Signal A	
		Unsicherheit	[%]	Unsicherheit	[%]
Mn :	2.1822e4	4.04	1.5553e4	n/v	g/mol
Mw :	2.7027e4	4.04	2.3501e4	n/v	g/mol
Mz:	3.2042e4	4.04	3.3252e4	n/v	g/mol
Mv:	2.7027e4	4.04	2.3501e4	n/v	g/mol
D :	1.2385e0	5.71	1.5110e0	n/v	-
[n]:	0.000000	4.04	0.000000	n/v	ml/g
Vp:	2.4588e1	4.04	2.4743e1	n/v	ml
Mp:	2.8519e4	4.04	2.6332e4	n/v	g/mol
FI :	1.2958e4	4.04	6.003e-1	n/v	mI*V
< 2406	0.00	4.04	0.00	n/v	
w%:	100.00	4.04	100.00	n/v	
> 12888	84 0.00	4.04	0.00	n/v	

Projekt : Datum : C:\GPC-Daten\Installation.LDX Montag 29.02.16 14:46:38 Kostenstelle : Zeichen :

Fig. S20 GPC chromatogram of PCL (sample Table 2, Entry 17).

6. Redox Reactions

Fig. S21 ¹H NMR spectrum (THF-d₈, 400 MHz) of complex 2 after adding one equivalent of FcBAr^F.

Fig S 22 13 C { 1 H} NMR spectrum (THF- d_{8} , 400 MHz) of complex 2 after adding one equivalent of FcBAr^F.

Fig. S23 ^{11}B { ^{1}H } NMR spectrum (THF- d_{8} , 400 MHz) of complex 2 after adding one equivalent of FcBAr^F.

Fig. S24 ¹⁹F {¹H} NMR spectrum (THF-*d*₈, 400 MHz) of complex 2 after adding one equivalent of FcBAr^F.

Fig. S25 ¹H NMR spectrum (THF-*d*₈, 400 MHz) of complex **3** after adding one equivalent of FcBAr^F.

Fig. S26 13 C { 1 H} NMR spectrum (THF- d_{8r} 400 MHz) of complex 3 after adding one equivalent of FcBAr^F.

Fig. S27 ^{11}B { ^{1}H } NMR spectrum (THF- d_{8} , 400 MHz) of complex 3 after adding one equivalent of FcBAr^F.

Fig. S28 19 F { 1 H} NMR spectrum (THF- d_8 , 400 MHz) of complex 3 after adding one equivalent of FcBAr^F.

7. Crystallography

X-ray diffraction data were collected on a Bruker CCD area-detector diffractometer with Mo K α radiation (monolayer optics, λ = 0.71073 Å) using ω scans.^{S1} The SMART program package was used for the data collection and unit cell determination; processing of the raw frame data was performed using SAINT; absorption corrections were applied with SADABS.^{S2} The structures were solved by direct methods (SIR-92).^{S3} All non-hydrogen atoms were refined anisotropically using all reflections with the program SHELXL-2013 as implemented in the program system WinGX.^{S4} All hydrogen atoms were placed in calculated positions and treated as riding. The graphical representations were performed with the program DIAMOND.^{S5}

	$1 \cdot C_6H_{14}$
formula	$C_{46}H_{70}FeLaNO_2S_2Si_2 + C_6H_{14}$
M _w	1070.26
cryst. system and space group	monoclinic, $P 2_1/c$
a [Å]	10.0044(10)
b [Å]	29.326(3)
c [Å]	19.1690(19)
в [°]	92.678(2)
V [Å ³]	5617.8(10)
Ζ	4
d _{calcd} [g cm⁻³]	1.265
radiation (λ [Å])	ΜοΚα (0.71073)
2ϑ _{max} [°]	55.8
μ [mm ⁻¹]	1.16
F [000]	2248
T _{min} , T _{max}	0.533, 0.746
reflns	67369 (R _{int} = 0.0899)
indep. reflns	12368
obs. refins with $l > 2\sigma(l)$	9220
parameters refined	570
GOF	1.047
R1, wR2 for $l > 2\sigma(l)$	0.0423, 0.0905
R1, wR2 for all data	0.0697, 0.0957
$\Delta e_{\max}, \Delta e_{\min} [e \text{ Å}^{-3}]$	0.952, - 0.654

Table S1 Crystallographic data and structure refinement details for complex 1

8. Cyclic Voltammograms

Fig S29a Cyclic voltammogram of LH₂, background (black), complex (red) vs ferrocene/ferrocenium (2.0 mmol/L in 1,2difluorobenzene, 200 mV/s scan rate, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

 $\label{eq:Fig S29b} \mbox{ Cyclic voltammogram of LH}_2 \mbox{ vs ferrocene/ferrocenium, } E_{1/2} = 0.11 \mbox{ V} (2.0 \mbox{ mmol/L in 1,2-difluorobenzene, 20 mV/s scan rate, 0.10 mol/L } [N'^Bu_4] [B(C_6F_5)_4]).$

Fig S29c Cyclic voltammogram of LH₂ vs ferrocene/ferrocenium, 20 mV/s scan rate (purple), 50 mV/s scan rate (blue), 100 mV/s scan rate (red), 200 mV/s scan rate (black), E_{1/2} = 0.11 V (2.0 mmol/L in 1,2-difluorobenzene, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

Fig. S30a Cyclic voltammogram of LLaN(SiMe₃)₂ (1), background (red), complex (black) vs ferrocene/ferrocenium (2.0 mmol/L in 1,2-difluorobenzene, 200 mV/s scan rate, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

Fig. S30b Cyclic voltammogram of 1 vs ferrocene/ferrocenium, $E_{1/2} = 0.093$ V (2.0 mmol/L in 1,2-difluorobenzene, 20 mV/s scan rate, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

Fig. S30c Cyclic voltammogram of 1 vs ferrocene/ferrocenium, 20 mV/s scan rate (black), 50 mV/s scan rate (red), 100 mV/s scan rate (blue), 200 mV/s scan rate (purple), E_{1/2} = 0.093 V (2.0 mmol/L in 1,2-difluorobenzene, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

Fig. S31a Cyclic voltammogram of 2, background (red), complex (black) vs ferrocene/ferrocenium (2.0 mmol/L in 1,2-difluorobenzene, 200 mV/s scan rate, 0.10 mol/L $[N^n Bu_4][B(C_6F_5)_4)$.

Fig. S31b Cyclic voltammogram of 2 vs ferrocene/ferrocenium, $E_{1/2} = 0.055$ V (2.0 mmol/L in 1,2-difluorobenzene, 20 mV/s scan rate, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

Fig. S31c Cyclic voltammogram of 2 vs ferrocene/ferrocenium, 20 mV/s scan rate (black), 50 mV/s scan rate (red), 100 mV/s scan rate (blue), 200 mV/s scan rate (purple), E_{1/2} = 0.055 V (2.0 mmol/L in 1,2-difluorobenzene, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

Fig. S32a Cyclic voltammogram of 3, background (black), complex (red) vs ferrocene/ferrocenium (2.0 mmol/L in 1,2-difluorobenzene, 200 mV/s scan rate, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

Fig. S32b Cyclic voltammogram of 3 vs ferrocene/ferrocenium, $E_{1/2} = 0.084$ V (2.0 mmol/L in 1,2-difluorobenzene, 20 mV/s scan rate, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

Fig. S32c Cyclic voltammogram of 3 vs ferrocene/ferrocenium, 20 mV/s scan rate (black), 50 mV/s scan rate (red), 100 mV/s scan rate (blue), 200 mV/s scan rate (purple), E_{1/2} = 0.084 V (2.0 mmol/L in 1,2-difluorobenzene, 0.10 mol/L [NⁿBu₄][B(C₆F₅)₄]).

9. References

S1. Bruker, SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA, 1999.

S2. Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2004.

S3. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. c. Burla, G. Polidori and M. Camalli, J. Appl. Cryst., 1994, 27, 435-436.

S4. (a) G. M. Sheldrick, Acta. Cryst., 2008, A64, 112-122. (b) L. J. Farrugia, J. Appl. Cryst., 1999, 32, 837-838.

S5. K. Brandenburg, Diamond, Crystal Impact GbR, Bonn (Germany), 2004.