Supporting Information for

A Class of Economic and Effective of Decarboxylative Perfluoroalkylating Reagents: $[(phen)_2Cu](O_2CR_F)$

Yangjie Huang,[†] Manjaly J. Ajitha,[‡] Kuo-Wei Huang^{‡,}* Zhongxing Zhang,[§] and Zhiqiang Weng^{†,*}

[†]State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China. [‡]KAUST Catalysis Center and Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia. §Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 13863.

Corresponding authors: zweng@fzu.edu.cn

Table of Contents

General information	2
Synthesis of complexes 1a-c	3
Optimization of pentafluoroethylation of 1-iodo-4-methoxybenzene with 1a	6
General procedure for perfluoroalkylation of aryl iodides	7
Procedure for gram scale reaction	8
Data for Compound 3–6	9
Crystal Structure Analyses	37
Computational studies	39
References	56
Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	57

General Information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. Coupling constants (*J*) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (chloroform δ 7.26) and ¹³C NMR (chloroform δ 77.0). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. HRMS were obtained on Waters GCT-TOF at the Shanghai Institute of Organic Chemistry. 2-Iodo-3,17-dimethoxy- β -estra-1,3,5(10)-triene was prepared according to the published procedures.¹ Other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the published procedures prior to use. Column chromatography purifications were performed by flash chromatography using Merck silica gel 60.

Synthesis of [(phen)₂Cu][O₂CC₂F₅] (1a).

A solution of NaOt-Bu (345 mg, 3.6 mmol) in 10.0 mL of THF was added to a suspension of CuCl (297 mg, 3.0 mmol) in 60 mL of THF, and the resulting mixture was stirred at room temperature for 120 min. The resulting light yellow mixture was filtered through a layer of Celite. To this filtrate was added a solution of 1,10-phenanthroline (1080 mg, 6.0 mmol) in 10 mL of THF. The resulting solution turned reddish brown immediately and was stirred at room temperature for an additional 5 min. A THF solution (1 mL) of C₂F₅CO₂H (810 mg, 3.0 mmol) was added dropwise and the mixture was further stirred at room temperature for 20 min. The solution was filtered, and the filtrate was dried under vacuum to yield a reddish brown solid. The resulting solid were washed with 2×2 mL of diethyl ether and dried under vacuum to obtain 1.38 g (79%) of 1a. ¹H NMR (400 MHz, DMSO- d_6) δ 9.02 (d, J = 3.7 Hz, 4H, H₁), 8.82 (dd, J = 8.1, 1.1 Hz, 4H, H₃), 8.27 (s, 4H, H₄), 7.99 (dd, J = 8.1, 4.7 Hz, 4H, H₂). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -81.5 (t, J = 1.4 Hz, 3F, CF₃), -118.1 (d, J = 1.4 Hz, 2F, CF₂). ¹³C NMR (101 MHz, DMSO- d_6) δ 158.3 (t, J = 21.9Hz), 149.8 (s), 143.5 (s), 137.7 (s), 129.4 (s), 127.5 (s), 126.2 (s), 120.0 (qt, $J_{CF} = 286.4, 36.4$ Hz, CF₃), 107.6 (tq, $J_{CF} = 266.6$, 35.4 Hz, CF₂). Elemental Analysis(%) calculated for C₂₇H₁₆CuF₅N₄O₂: C 55.25, H 2.75, N 9.54. Found: C 55.47, H 2.89, N 9.77.

Synthesis of [(phen)₂Cu][*n*-C₃F₇CO₂] (1b).

A solution of NaOt-Bu (345 mg, 3.6 mmol) in 10 mL of THF was added to a suspension of CuCl (297 mg, 3.0 mmol) in 60 mL of THF, and the resulting mixture was stirred at room temperature for 120 min. The resulting light yellow mixture was filtered through a layer of Celite. To this filtrate was added a solution of 1,10-phenanthroline (1080 mg, 6.0 mmol) in 10 mL of THF. The resulting solution turned reddish brown immediately and was stirred at room temperature for an additional 5 min. A THF solution (1 mL) of *n*-C₃F₇CO₂H (960 mg, 3.0 mmol) was added dropwise and the mixture was further stirred at room temperature for 20 min. The solution was filtered, and the filtrate was dried under vacuum to yield a reddish brown solid. The resulting solid were washed with 2×2 mL of diethyl ether and dried under vacuum to obtain 1.14 g (60%) of **1b**. ¹H NMR (400 MHz, DMSO- d_6) δ 9.01 (d, J = 3.7 Hz, 4H, H₁), 8.82 (dd, J = 8.1, 1.0 Hz, 4H, H₃), 8.27 (s, 4H, H₄), 7.99 (dd, J = 8.1, 4.7 Hz, 4H, H₂). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -80.2 (t, J = 8.5 Hz, 3F, CF₃), -115.6 (q, J = 8.4 Hz, 2F, CF₂), -126.1 (s, 2F, CF₂). ¹³C NMR (101 MHz, DMSO- d_6) δ 158.0 (t, J = 22.2 Hz), 149.8 (s), 143.5 (s), 137.7 (s), 129.4 (s), 127.5 (s), 126.2 (s), 125.0 - 104.4 (m, $CF_2CF_2CF_3$). Elemental Analysis(%) calculated for C₂₈H₁₆CuF₇N₄O₂·C₆H₆: C 57.11, H 3.10, N 7.83. Found: C 57.32, H 3.19, N 8.06.

Synthesis of $[(phen)_2Cu][n-C_4F_9CO_2]$ (1c).

A solution of NaOt-Bu (345 mg, 3.6 mmol) in 10 mL of THF was added to a suspension of CuCl (297 mg, 3.0 mmol) in 60 mL of THF, and the resulting mixture was stirred at room temperature for 120 min. The resulting light yellow mixture was filtered through a layer of Celite. To this filtrate was added a solution of 1,10-phenanthroline (1080 mg, 6.0 mmol) in 10 mL of THF. The resulting solution turned reddish brown immediately and was stirred at room temperature for an additional 5 min. A THF solution (1 mL) of n-C₄F₉CO₂H (1110 mg, 3.0 mmol) was added dropwise and the mixture was further stirred at room temperature for 20 min. The solution was filtered, and the filtrate was dried under vacuum to yield a reddish brown solid. The resulting solid were washed with 2 × 2 mL of hexanes and dried under vacuum to obtain 1.02 g (50%) of **1c**. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.02 (d, *J* = 4.2 Hz, 4H, H₁), 8.83 (d, *J* = 8.1 Hz, 4H, H₃), 8.27 (s, 4H, H₄), 8.00 (dd, *J* = 8.1, 4.7 Hz, 4H, H₂). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -80.7 (tt, *J* = 9.7, 2.7 Hz, 3F, CF₃), -115.1 (td, *J* = 11.1, 2.7 Hz, 2F, CF₂), -119.5 - -124.9 (m, 2F, CF₂), -125.4 - -125.6 (m, 2F, CF₂). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 158.1 (t, *J* = 22.0 Hz), 149.8 (s), 143.5 (s), 137.7 (s), 129.5 (s), 127.5 (s), 126.2 (s), 124.7 - 106.2 (m, *CF*₂*CF*₂*CF*₃*CF*₃). Elemental Analysis(%) calculated for C₂₉H₁₆CuF₉N₄O₂: C 50.70, H 2.35, N 8.16. Found: C 50.45, H 2.71, N 8.09.

Synthesis of $[(phen)_2Cu][n-C_5F_{11}CO_2]$ (1d).

A solution of NaO*t*-Bu (345 mg, 3.6 mmol) in 10 mL of THF was added to a suspension of CuCl (297 mg, 3.0 mmol) in 60 mL of THF, and the resulting mixture was stirred at room temperature for 120 min. The resulting light yellow mixture was filtered through a layer of Celite. To this filtrate was added a solution of 1,10-phenanthroline (1080 mg, 6.0 mmol) in 10 mL of THF. The resulting solution turned reddish brown immediately and was stirred at room temperature for an additional 5 min. A THF solution (1 mL) of n-C₅F₁₁CO₂H (1260 mg, 3.0 mmol) was added dropwise and the mixture was further stirred at room temperature for 20 min. The solution was filtered, and the filtrate was dried under vacuum to yield a reddish brown solid. The resulting solid were washed with 2 × 2 mL of hexanes and dried under vacuum to obtain 1.01 g (51%) of **1d**. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.04 (s, 4H, H₁), 8.76 (d, *J* = 7.6 Hz, 4H, H₃), 8.21 (s, 4H, H₄), 8.07 – 7.71 (m, 4H, H₂). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -80.6 (t, *J* = 2.5 Hz, 3F, CF₃), -114.9 (t, *J* = 11.7 Hz, 2F, CF₂), -122.0 (s, 2F, CF₂), -122.3 (s, 2F, CF₂), -126.1 (s, 2F, CF₂). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 158.2 (t, *J* = 21.8 Hz), 150.1 (s), 143.9 (s), 137.5 (s), 129.3 (s), 127.4 (s), 125.7 (s), 124.2 – 102.1 (m, *CF₂CF₂CF₂CF₂CF₃).*

MeO	+ [pł	nen ₂ Cu][O ₂ CC ₂ F ₅] 1a	Conditions MeO	C ₂ F ₅
Entry	Solvent	Temp (°C)	Time (h)	Yield (%) ^[b]
1	DMF	130	12	43
2	DMAc	130	12	19
3	NMP	130	12	10
4	DMSO	130	12	3
5	CH ₃ CN	110	12	5
6	diglyme	130	12	53
7	dioxane	130	12	81
8	dioxane	120	12	25
9	dioxane	130	16	90

Optimization of pentafluoroethylation of 1-iodo-4-methoxybenzene with 1a. [a]

[a] Reaction conditions: **1a** (0.15 mmol), **2k** (0.10 mmol), solvent (1.5 mL), under N₂ atmosphere. [b] The yield was determined by ¹⁹F NMR spectroscopy with PhOCF₃ as internal standard.

General procedure for Perfluoroalkylation of aryl iodides:

In a dry box, [phen₂Cu][O₂CR_F] (0.75 mmol), aryl or heteroaryl halides (0.50 mmol), and 5.0 mL dioxane were added to a oven dried 25.0 mL test tube with Teflon screw cap. The tube was sealed and the solution was stirred at 130 °C for 16 h. Then the reaction mixture was filtered through a layer of Celite, eluted with diethyl ether. The resulting mixture was extracted by ethyl ether (20 mL × 3), and the combined organic layers was washed with water (60 mL × 3), and then dried over magnesium sulfate. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with *n*-pentane/Et₂O.

Procedure for gram scale reaction

In a dry box, [phen₂Cu][O₂CC₂F₅] (**1a**) (2.38 g, 4.1 mmol), 3-iodo-*N*-phenylcarbazole (1.0 g, 2.7 mmol), and 20 mL dioxane were added to a oven dried 100 mL test tube with Teflon screw cap. The tube was sealed and the solution was placed into a preheated 130 °C oil bath for 16 h. Then the reaction mixture was filtered through a layer of Celite, eluted with diethyl ether. The resulting mixture was extracted by ethyl ether (50 mL × 3), and the combined organic layers was washed with water (100 mL × 3), and then dried over magnesium sulfate. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with *n*-pentane/Et₂O. Compound **30** was obtained in 80% yield (0.78 g).

Data for compounds 3

1-tert-Butyl-4-(perfluoroethyl)benzene (3a)²

Obtained as a colourless oil in 82% yield (103 mg). R_f (*n*-pentane) = 0.88. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.35 (m, 4H, H₁, H₂), 1.35 (s, 9H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 155.3 (t, *J* = 1.6 Hz), 126.2 (td, *J* = 6.3, 1.0 Hz), 125.8 (s), 125.7 (s), 119.2 (qt, *J*_{CF} = 286.8, 39.4 Hz, *C*F₃), 113.6 (tq, *J*_{CF} = 253.5, 38.4 Hz, *C*F₂), 34.9 (s), 31.1 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.8 (s, 3F, CF₃), -114.5 (s, 2F, CF₂). GC-MS m/z 252 (M⁺).

1,3-Dimethyl-5-(perfluoroethyl)benzene (3b)

Obtained as a yellow oil in 74% yield (83 mg). R_f (*n*-pentane) = 0.79. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 3H, H₁, H₂), 2.40 (s, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 138.5 (s), 133.5 (t, *J* = 1.6 Hz), 126.1 (s), 124.0 (t, *J* = 6.2 Hz), 119.2 (qt, *J*_{CF} = 286.8, 39.4 Hz, CF₃), 113.5 (tq, *J*_{CF} = 254.5, 38.4 Hz, CF₂), 21.3 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.7 (s, 3F, CF₃), -114.6 (s, 2F, CF₂). IR (KBr): v 2924, 2851, 1456, 1383, 1257, 1200, 1111, 1036, 979, 857, 843, 8251, 698, 647 cm⁻¹. GC-MS m/z 224 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₉F₅: 224.0624; found: 224.0622.

4-(Perfluoroethyl)biphenyl (3c)³

Obtained as a white solid in 92% yield (125 mg). R_f (*n*-pentane) = 0.75. ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.67 (m, 4H, H₄, H₅), 7.66 – 7.59 (m, 2H, H₃), 7.55 – 7.46 (m, 2H, H₂), 7.47 – 7.39 (m, 1H, H₁). ¹³C NMR (101 MHz, CDCl₃) δ 144.9 (t, J = 1.7 Hz), 139.7 (s), 129.0 (s), 128.3 (s), 127.5 (s), 127.4 (s), 127.3 (s), 126.9 (t, J = 6.7 Hz), 119.2 (qt, J_{CF} = 286.8, 39.4 Hz, CF₃), 113.6 (tq, J_{CF} = 254.5, 38.4 Hz, CF₂). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.7 (s, 3F, CF₃), -114.7 (s, 2F, CF₂). GC-MS m/z 272 (M⁺).

2-(Perfluoroethyl)biphenyl (3d)

Obtained as a colourless oil in 39% yield (53 mg). $R_f(n\text{-pentane}) = 0.90$. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.8 Hz, 1H, H₁), 7.58 – 7.45 (m, 2H, H₂, H₃), 7.40 – 7.32 (m, 3H, H₄, H₅), 7.31 – 7.20 (m, 3H, H₆, H₇). ¹³C NMR (101 MHz, CDCl₃) δ 142.6 (t, J = 2.4 Hz), 140.4 (s), 132.8 (s), 131.1 (s), 129.0 (s), 127.9 (td, J = 7.7, 1.3 Hz), 127.5 (s), 127.3 (s), 127.2 (s), 126.3 (t, J = 22.1 Hz), 119.1 (qt, $J_{CF} = 288.9, 40.4$ Hz, CF₃), 114.2 (tq, $J_{CF} = 258.5, 39.4$ Hz, CF₂). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.6 (s, 3F, CF₃), -106.5 (s, 2F, CF₂). IR (KBr): v 2917, 2849, 1599, 1483, 1443, 1332, 1290, 1201, 1151, 1118, 1080, 1056, 1009, 968, 954, 763, 734, 701, 670, 650 cm⁻¹. GC-MS m/z 272 (M⁺). HRMS (EI) m/z: calcd. for C₁₄H₉F₅: 272.0624; found: 272.0619.

1-(Perfluoroethyl)naphthalene (3e)⁴

Obtained as a colourless oil in 76% yield (93 mg). $R_f(n\text{-pentane}) = 0.87$. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.5 Hz, 1H, H₁), 8.06 (d, J = 8.2 Hz, 1H, H₇), 7.93 (d, J = 8.0 Hz, 1H, H₃), 7.85 (d, J = 7.4 Hz, 1H, H₄), 7.67 – 7.48 (m, 3H, H₂, H₅, H₆). ¹³C NMR (101 MHz, CDCl₃) δ 134.1 (s), 133.3 (t, J = 1.3 Hz), 129.9 (t, J = 1.4 Hz), 129.0 (s), 127.6 (t, J = 1.2 Hz), 127.4 (td, J = 9.6, 1.0 Hz), 126.4 (s), 125.7 (s), 124.7 (tq, J = 6.1, 2.0 Hz), 124.3 (s), 119.6 (qt, $J_{CF} = 287.9$, 39.4 Hz, CF₃), 115.2 (tq, $J_{CF} = 255.5$, 39.4 Hz, CF₂). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.4 (s, 3F, CF₃), -108.3 (s, 2F, CF₂). GC-MS m/z 246 (M⁺).

2-(Perfluoroethyl)-9H-fluorene (3f)

Obtained as a white solid in 78% yield (111 mg). $R_f(n\text{-pentane}) = 0.82$. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H, H₂, H₃), 7.77 (s, 1H, H₁), 7.69 – 7.52 (m, 2H, H₄, H₇), 7.48 – 7.28 (m, 2H, H₅, H₆), 3.96 (s, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 145.3 (t, J = 1.7 Hz), 143.8 (s), 143.5 (s), 140.3 (s), 128.0 (s), 127.1 (s), 126.6 (t, J = 23.7 Hz), 125.3 (s), 125.2 (s), 123.1 (td, J = 6.4, 0.6 Hz), 120.7 (s), 119.9 (s), 119.3 (qt, $J_{CF} = 286.8$, 40.4 Hz, CF₃), 113.9 (tq, $J_{CF} = 254.5$, 38.4 Hz, CF₂), 36.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.7 (s, 3F, CF₃), -113.8 (s, 2F, CF₂). IR (KBr): v 2927, 1467, 1427, 1332, 1300, 1229, 1203, 1182, 1162, 1148, 1121, 1085, 1005, 995, 954, 884, 867, 838, 773, 742, 665, 647 cm⁻¹. GC-MS m/z 284 (M⁺). HRMS (EI) m/z: calcd. for C₁₅H₉F₅: 284.0624; found: 284.0626.

4-(Perfluoroethyl)benzonitrile (3g)⁴

Obtained as a yellow oil in 39% yield (40 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.80. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2H, H₁), 7.74 (d, J = 8.3 Hz, 2H, H₂). ¹³C NMR (101 MHz, CDCl₃) δ 136.9 (s), 132.6 (s), 127.4 (td, J = 6.3, 1.0 Hz), 126.9 (s), 121.8 – 116.3 (m, CF₃), 116.3 (t, J = 1.8 Hz), 116.6 – 109.8 (m, CF₂). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.49 (s, 3F, CF₃), -115.74 (s, 2F, CF₂). GC-MS m/z 221 (M⁺).

1-(4-(Perfluoroethyl)phenyl)ethanone (3h)⁴

Obtained as a yellow oil in 62% yield (74 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.66. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 2H, H₁), 7.72 (d, J = 8.1 Hz, 2H, H₂), 2.65 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 197.0 (s), 139.8 (t, J = 1.5 Hz), 132.8 (t, J = 23.9 Hz), 128.5 (s), 126.9 (td, J = 6.3, 1.0 Hz), 119.3 (qt, J_{CF} = 286.8, 40.4 Hz, CF₃), 113.9 (tq, J_{CF}

= 254.5, 38.4 Hz, CF₂), 26.8 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.6 (s, 3F, CF₃), -115.4 (s, 2F, CF₂). GC-MS m/z 238 (M⁺).

Methyl 4-(perfluoroethyl)benzoate (3i) ³

Obtained as a yellow oil in 76% yield (96 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.87. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.5 Hz, 2H, H₁), 7.69 (d, J = 8.2 Hz, 2H, H₂), 3.96 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.9 (s), 133.5 (t, J = 1.6 Hz), 132.8 (t, J = 23.8 Hz), 129.9 (s), 126.7 (td, J = 6.3, 1.0 Hz), 118.9 (qt, J_{CF} = 286.8, 39.4 Hz, CF₃), 113.1 (tq, J_{CF} = 255.5, 38.4 Hz, CF₂), 52.5 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.6 (s, 3F, CF₃), -115.4 (s, 2F, CF₂). GC-MS m/z 254 (M⁺).

Methyl 4-methyl-3-(perfluoroethyl)benzoate (3j)

Obtained as a yellow oil in 68% yield (91 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.83. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H, H₁), 8.07 (d, J = 8.0 Hz, 1H, H₃), 7.36 (d, J = 8.0 Hz, 1H, H₂), 3.93 (s, 3H, OCH₃), 2.54 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.8 (s), 143.1 (t, J = 2.1 Hz), 132.9 (s), 132.6 (t, J = 1.1 Hz), 129.4 (td, J = 8.9, 1.0 Hz), 128.5 (s), 127.2 (t, J = 22.5 Hz), 119.4 (qt, J_{CF} = 287.9, 39.4 Hz, CF₃), 114.4 (tq, J_{CF} = 256.5, 39.4 Hz, CF₂), 52.3 (s), 20.5 (tt, J = 3.8, 2.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.2 (s, 3F, CF₃), -110.5 (s, 2F, CF₂). IR (KBr): v 2956, 1727, 1617, 1437, 1312, 1281, 1243, 1197, 1157, 1131, 1119, 1078, 1037, 1014, 995, 962, 922, 852, 789, 760, 681 cm⁻¹. GC-MS m/z 268 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₉F₅O₂: 268.0523; found: 268.0517.

1-Methoxy-4-(perfluoroethyl)benzene (3k)²

Obtained as a colourless oil in 87% yield (98 mg). $R_f(n\text{-pentane}) = 0.48$. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.6 Hz, 2H, H₂), 6.99 (d, J = 8.4 Hz, 2H, H₁), 3.86 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (t, J = 1.6 Hz), 128.0 (td, J = 6.4, 1.1 Hz), 120.7 (s), 119.2 (qt, $J_{CF} = 284.2$, 40.1 Hz, CF₃), 114.1 (s), 113.6 (tq, $J_{CF} = 251.5$, 38.2 Hz, CF₂), 55.4 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -85.0 (s, 3F, CF₃), -113.8 (s, 2F, CF₂). GC-MS m/z 226 (M⁺).

1-Methoxy-2-(perfluoroethyl)benzene (3l)⁴

Obtained as a yellow oil in 61% yield (69 mg). R_f (*n*-pentane) = 0.63. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (m, 2H, H₃, H₄), 7.13 – 6.95 (m, 2H, H₁, H₂), 3.87 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (t, J = 2.7 Hz), 133.5 (t, J = 1.4 Hz), 128.8 (td, J = 8.6, 0.7 Hz), 120.9 (t, J = 39.2 Hz), 120.3 (s), 119.5 (qt, J_{CF} = 287.9, 39.4 Hz, CF₃), 113.7 (tq, J_{CF} = 256.5, 40.4 Hz, CF₂), 112.5 (s), 55.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.9 (s, 3F, CF₃), -111.8 (s, 2F, CF₂). GC-MS m/z 226 (M⁺).

1,3-Dimethoxy-2-(perfluoroethyl)benzene (3m)

Obtained as a yellow oil in 72% yield (92 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (t, J = 8.4 Hz, 1H, H₂), 6.62 (d, J = 8.4 Hz, 2H, H₁), 3.83 (s, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 160.5 (t, J = 2.2 Hz), 133.3 (s), 119.8 (qt, J_{CF} = 288.9, 39.4 Hz, CF₃), 114.2 (tq, J_{CF} = 258.6, 40.4 Hz, CF₂), 105.3 (s), 104.2 (s), 56.4 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.8 (s, 3F, CF₃), -107.2 (s, 2F, CF₂). IR (KBr): v 2946, 2846, 1595, 1478, 1435, 1346, 1299, 1258, 1225, 1193, 1137, 1112, 1090, 1053, 1022, 957, 922, 903, 883, 784, 757, 722, 683, 650 cm⁻¹. GC-MS m/z 256 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₉F₅O₂: 256.0523; found: 256.0528.

1-Chloro-3-(perfluoroethyl)benzene (3n) ⁵

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3n** was produced in 67% yield. Characterization of **3n** in reaction solution: ¹⁹F NMR (unlocked) δ -84.6 (s, 3F, CF₃), -114.5 (s, 2F, CF₂). GC-MS m/z 230 (M⁺).

3-(Perfluoroethyl)-9-phenyl-9H-carbazole (30)

Obtained as a yellow oil in 83% yield (150 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H, H₁), 8.22 (d, J = 7.8 Hz, 1H, H₂), 7.70 – 7.60 (m, 3H, H₃, H₄, H₇), 7.61 – 7.42 (m, 6H, H₅, H₆, H₈, H₉), 7.38 (t, J = 7.4 Hz, 1H, H₁₀). ¹³C NMR (101 MHz, CDCl₃) δ 142.6 (s), 141.7 (s), 136.9 (s), 130.1 (s), 128.2 (s), 127.2 (s), 126.9 (s), 123.8 (t, J = 6.1 Hz), 123.3 (s), 122.8 (s), 120.8 (s), 120.6 (s), 119.9 (t, J = 24.2 Hz), 119.2 (t, J = 6.8 Hz), 119.5 (qt, J_{CF} = 286.8, 41.4 Hz, CF₃), 114.4 (tq, J_{CF} = 253.5, 38.4 Hz, CF₂), 110.2 (s), 109.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.6 (s, 3F, CF₃), -112.4 (s, 2F, CF₂). IR (KBr): v 1632, 1599, 1503, 1456, 1436, 1365, 1333, 1320, 1257, 1237, 1198, 1146, 1121, 1109, 1083, 978, 939, 745, 732, 698, 672 cm⁻¹. GC-MS m/z 361 (M⁺). HRMS (EI) m/z: calcd. for C₂₀H₁₂F₅N: 361.0890; found: 361.0887.

Methyl 6-(perfluoroethyl)picolinate (3p) ⁶

Obtained as a yellow oil in 65% yield (83 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.61. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 7.9 Hz, 1H, H₁), 8.06 (t, J = 7.7 Hz, 1H, H₂), 7.88 (d, J = 7.9 Hz, 1H, H₃), 4.01 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 164.7 (s), 148.7 (s), 147.9 (t, J = 26.0 Hz), 138.6 (s), 127.5 (t, J = 1.3 Hz), 124.9 (td, J = 4.3, 1.0 Hz), 118.8 (qt, J_{CF} = 287.9, 37.4 Hz, CF₃), 110.9 (tq, J_{CF} = 256.5, 38.4 Hz, CF₂), 53.2 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.1 (s, 3F, CF₃), -117.2 (s, 2F, CF₂). GC-MS m/z 255 (M⁺).

1-(6-(Perfluoroethyl)pyridin-3-yl)ethanone (3q)

Obtained as a colourless oil in 51% yield (61 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.38. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H, H₁), 8.42 (dd, J = 8.2, 2.1 Hz, 1H, H₂), 7.84 (d, J= 8.2 Hz, 1H, H₃), 2.69 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 195.5 (s), 151.1 (t, J = 25.8 Hz), 149.82 (s), 136.98 (s), 134.05 (t, J = 1.4 Hz), 122.08 (td, J = 4.3, 0.9 Hz), 118.7 (qt, J_{CF} = 287.9, 37.4 Hz, CF₃), 111.0 (tq, J_{CF} = 256.5, 38.4 Hz, CF₂), 26.94 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.0 (d, J = 1.8 Hz, 3F, CF₃), -117.4 (s, 2F, CF₂). IR (KBr): v 2922, 1698, 1593, 1427, 1381, 1359, 1333, 1309, 1270, 1206, 1161, 1112, 1081, 1022, 983, 961, 850, 736, 648, 636 cm⁻¹. GC-MS m/z 239 (M⁺). HRMS (EI) m/z: calcd. for C₉H₆F₅NO: 239.0370; found: 239.0371.

5-Methoxy-2-(perfluoroethyl)pyridine (3r)

Obtained as a colourless oil in 53% yield (60 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.66. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H, H₁), 7.63 (d, J = 8.7 Hz, 1H, H₃), 7.30 (dd, J = 8.7, 2.7 Hz, 1H, H₂), 3.92 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 157.6 (t, J = 1.4 Hz), 139.4 (t, J = 26.2 Hz), 138.3 (s), 122.8 (td, J = 4.4, 0.9 Hz), 120.4 (s), 119.0 (qt, J_{CF} = 287.9, 38.4 Hz, CF₃), 111.4 (tq, J_{CF} = 254.5, 37.4 Hz, CF₂), 55.8 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.5 (s, 3F, CF₃), -116.3 (s, 2F, CF₂). IR (KBr): v 2930, 1688, 1583, 1437, 1371, 1379, 1343, 1319, 1260, 1226, 1151, 1122, 1091, 1032, 963, 971, 860, 746, 647, 626 cm⁻¹. GC-MS m/z 227 (M⁺). HRMS (EI) m/z: calcd. for C₈H₆F₅NO: 227.0370; found: 227.0366.

2-(Perfluoroethyl)quinoline (3s)⁴

Obtained as a orange oil in 80% yield (99 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (dd, J = 8.5, 3.7 Hz, 1H, H₂), 8.24 (d, J = 8.5 Hz, 1H, H₁), 7.90 (d, J = 8.2 Hz, 1H, H₆), 7.84 – 7.79 (m, 1H, H₅), 7.75 (d, J = 8.6 Hz, 1H, H₃), 7.67 (t, J = 7.5 Hz, 1H, H₄). ¹³C NMR (101 MHz, CDCl₃) δ 147.5 (t, J = 25.4 Hz), 147.4 (s), 137.8 (s), 130.7 (s), 130.3 (s), 128.7 (s), 128.6 (s), 127.6 (s), 119.1 (qt, J_{CF} = 287.9, 38.4 Hz, CF₃), 117.8 (td, J = 3.8, 1.1 Hz), 111.4 (tq, J_{CF} = 256.5, 38.4 Hz, CF₂). ¹⁹F NMR (376 MHz, CDCl₃) δ -82.8 (t, J = 1.8 Hz, 3F, CF₃), -116.6 (s, 2F, CF₂). GC-MS m/z 247 (M⁺).

2-(Perfluoroethyl)quinoxaline (3t)⁶

Obtained as a yellow oil in 70% yield (87 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.85. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H, H₁), 8.28 – 8.19 (m, 2H, H₂, H₅), 7.97 – 7.89 (m, 2H, H₃, H₄). ¹³C NMR (101 MHz, CDCl₃) δ 143.6 (t, J = 1.4 Hz), 142.5 (t, J = 25.9 Hz), 141.7 (ddd, J = 5.4, 3.0, 1.1 Hz), 141.1 (s), 132.5 (s), 131.5 (s), 130.2 (s), 129.5 (s), 118.8 (qt, $J_{CF} = 287.9$, 36.4 Hz, CF₃), 111.1 (tq, $J_{CF} = 257.6$, 38.4 Hz, CF₂). ¹⁹F NMR (376 MHz, CDCl₃) δ - 82.9 – -82.9 (m, 3F, CF₃), -117.0 (s, 2F, CF₂). GC-MS m/z 248 (M⁺).

(8R,9S,13S,14S,17S)-3,17-Dimethoxy-13-methyl-2-(perfluoroethyl)-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene (3u)

Obtained as a white solid in 55% yield (115 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.89. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H, H₁), 6.71 (s, 1H, H₂), 3.82 (s, 3H, OCH₃), 3.38 (s, 3H, OCH₃), 3.32 (t, J = 8.3 Hz, 1H, CH), 3.02 – 2.78 (m, 2H, CH₂), 2.39 – 2.25 (m, 1H, CH), 2.22 – 2.15 (m, 1H, CH), 2.13 – 2.01 (m, 2H, CH₂), 1.92 – 1.88 (m, 1H, CH), 1.77 – 1.65 (m, 1H, CH), 1.59 – 1.17 (m, 7H, CH₂), 0.80 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 155.9 (t, J = 2.5 Hz), 142.7 (s), 132.6 (s), 125.7 (t, J = 8.4 Hz), 119.5 (qt, J_{CF} = 287.9, 40.4 Hz, CF₃), 114.0 (tq, J_{CF} = 257.6, 38.4 Hz, CF₂), 113.9 (t, J = 22.4 Hz), 112.8 (s), 90.7 (s),

57.9 (s), 55.9 (s), 50.2 (s), 43.7 (s), 43.2 (s), 38.4 (s), 37.9 (s), 29.9 (s), 27.7 (s), 26.9 (s), 26.3 (s), 23.0 (s), 11.5 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.9 (t, *J* = 1.9 Hz, 3F, CF₃), -111.3 (s, 2F, CF₂). IR (KBr): v 2930, 2869, 1617, 1506, 1464, 1409, 1326, 1277, 1240, 1193, 1146, 1133, 1102, 1070, 1029, 996, 975, 961, 901, 864, 753, 730, 649 cm⁻¹. GC-MS m/z 418 (M⁺). HRMS (EI) m/z: calcd. for C₂₂H₂₇F₅O₂: 418.1931; found: 418.1933.

2-Methyl-4-(perfluoroethyl)aniline (3v)

Obtained as a yellow oil in 53% yield (60 mg). R_f (*n*-pentane/diethyl ether 10:3) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.23 (m, 2H, H₂, H₃), 6.70 (d, J = 9.0 Hz, 1H, H₁), 3.90 (s, 2H, NH₂), 2.19 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 147.8 (t, J = 1.5 Hz), 130.0 (s), 128.5 (td, J = 6.3, 1.0 Hz), 125.5 (t, J = 6.0 Hz), 123.7 – 110.6 (m, CF_2CF_3), 115.9 (s), 114.10 (s), 17.3 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.6 (s, 3F, CF₃), -113.8 (s, 2F, CF₂). GC-MS m/z 225 (M⁺). HRMS (EI) m/z: calcd. for C₉H₈F₅N: 225.0577; found: 225.0575.

1-tert-Butyl-4-(perfluoropropyl)benzene (4a)

Obtained as a colourless oil in 86% yield (130 mg). R_f (*n*-pentane) = 0.94. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.50 (m, 4H, H₁, H₂), 1.38 (s, 9H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 155.4 (t, *J* = 1.7 Hz), 126.5 (t, *J* = 6.5 Hz), 125.8 (t, *J* = 21.9 Hz), 125.6 (s), 118.1 (qt, *J* = 288.6, 34.4 Hz), 115.4 (tt, *J* = 255.3, 30.7 Hz), 108.8 (tq, *J* = 264.7, 37.8 Hz), 34.9 (s), 31.1 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.1 (t, *J* = 9.9 Hz, 3F, CF₃), -111.4 (q, *J* = 9.8 Hz, 2F, CF₂), -126.5 (s, 2F, CF₂). IR (KBr): v 2967, 1614, 1348, 1270, 1228, 1204, 1179, 1113, 1071, 1040, 1015, 931, 902, 828, 724, 678, 650 cm⁻¹. GC-MS m/z 302 (M⁺). HRMS (EI) m/z: calcd. for C₁₃H₁₃F₇: 302.0905; found: 302.0901.

1,3-dimethyl-5-(perfluoropropyl)benzene (4b)

Obtained as a colourless oil in 73% yield (100 mg). R_f (*n*-pentane) = 0.93. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (s, 3H, H₁, H₂), 2.38 (s, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.9 (s), 132.8 (t, J = 24.2 Hz), 129.8 (s), 126.9 (t, J = 6.4 Hz), 117.9 (qt, J = 288.9, 33.9 Hz), 114.9 (tt, J = 255.3, 30.7 Hz), 108.6 (tq, J = 265.1, 37.7 Hz), 52.5 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.0 (t, J = 10.0 Hz, 3F, CF₃), -111.4 (q, J = 10.0 Hz, 2F, CF₂), -126.4 (s, 2F, CF₂). IR (KBr): v 2921, 2174, 2153, 1456, 1383, 1257, 1238, 1123, 1046, 981, 857, 833, 8251, 699, 637 cm⁻¹. GC-MS m/z 274 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₉F₇: 274.0592; found: 274.0591.

4-(perfluoropropyl)biphenyl (4c)⁷

Obtained as a white solid in 93% yield (150 mg). R_f (*n*-pentane) = 0.83. ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.61 (m, 6H, H₃, H₄, H₅), 7.53 – 7.42 (m, 3H, H₁, H₂). ¹³C NMR (101 MHz, CDCl₃) δ 145.9 (t, J = 1.6 Hz), 139.7 (s), 129.0 (s), 128.3 (s), 118.1 (qt, J = 288.8, 34.5 Hz), 115.4 (tt, J = 255.8, 31.2 Hz), 108.8 (tq, J = 265.7, 38.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ - 80.0 (t, J = 9.9 Hz, 3F, CF₃), -111.6 (q, J = 9.8 Hz, 2F, CF₂), -126.4 (s, 2F, CF₂). GC-MS m/z 322 (M⁺).

1-(Perfluoropropyl)naphthalene (4e)

Obtained as a colourless oil in 41% yield (61 mg). $R_f(n\text{-pentane}) = 0.83$. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.3 Hz, 1H, H₁), 8.06 (d, J = 8.2 Hz, 1H, H₇), 7.93 (d, J = 7.8 Hz, 1H, H₃), 7.83 (d, J = 7.4 Hz, 1H, H₄), 7.64 – 7.54 (m, 3H, H₂, H₅, H₆). ¹³C NMR (101 MHz, CDCl₃) δ 134.1 (s), 133.4 (s), 130.2 (s), 129.0 (s), 127.8 (t, J = 9.9 Hz), 127.6 (s), 126.4 (s), 125.7 (s), 124.8 (tt, J = 6.3, 3.3 Hz), 124.2 (s), 118.3 (qt, J = 295.1, 33.2 Hz), 117.2 (tt, J = 257.1, 32.6 Hz), 109.4 (tq, J = 264.9, 37.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -79.9 (t, J = 10.4 Hz, 3F, CF₃), -105.3 (q, J = 10.3 Hz, 2F, CF₂), -124.7 (s, 2F, CF₂). IR (KBr): v 3058, 1580, 1515, 1341, 1287, 1252, 1226, 1204, 1178, 1126, 1110, 1071, 1061, 1029, 995, 927, 913, 890, 861, 812, 794, 771, 741, 693, 527 cm⁻¹. GC-MS m/z 296 (M⁺). HRMS (EI) m/z: calcd. for C₁₃H₇F₇: 296.0436; found: 296.0430.

2-(Perfluoropropyl)-9H-fluorene (4f)

Obtained as a white solid in 88% yield (147 mg). $R_f(n\text{-pentane}) = 0.74$. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.80 (m, 2H, H₂, H₃), 7.76 (s, 1H, H₁), 7.67 – 7.54 (m, 2H, H₄, H₇), 7.49 – 7.34 (m, 2H, H₅, H₆), 3.94 (s, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 145.4 (t, J = 1.7 Hz), 143.9 (s), 143.4 (s), 140.2 (s), 128.0 (s), 127.1 (s), 126.7 (t, J = 24.1 Hz), 125.6 (t, J = 6.6 Hz), 125.2 (s), 123.4 (t, J = 6.7 Hz), 120.7 (s), 119.8 (s), 118.2 (qt, J = 288.8, 34.5 Hz), 115.4 (tt, J

= 255.9, 30.9 Hz), 108.9 (tq, J = 264.7, 37.8 Hz), 36.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ - 80.0 (t, J = 9.9 Hz, 3F, CF₃), -110.6 (q, J = 9.9 Hz, 2F, CF₂), -126.2 (s, 2F, CF₂). IR (KBr): v 2930, 1424, 1352, 1274, 1230, 1192, 1175, 1147, 1115, 1070, 903, 832, 813, 772, 727, 649 cm⁻¹. GC-MS m/z 334 (M⁺). HRMS (EI) m/z: calcd. for C₁₆H₉F₇: 334.0592; found: 334.0588.

4-(Perfluoropropyl)benzonitrile (4g)⁸

Obtained as a yellow oil in 52% yield (71 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.2 Hz, 2H, H₁), 7.73 (d, J = 8.3 Hz, 2H, H₂). ¹³C NMR (101 MHz, CDCl₃) δ 133.0 (t, J = 25.0 Hz), 132.5 (s), 127.7 (tt, J = 6.5, 1.5 Hz), 117.4 (s), 116.4 (t, J = 1.9 Hz), 118.1 (qt, J = 288.5, 34.4 Hz), 115.3 (tt, J = 255.7, 30.6 Hz), 108.5 (tq, J = 264.7, 37.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -79.9 (t, J = 9.8 Hz, 3F, CF₃), -112.7 (q, J = 9.8 Hz, 2F, CF₂), -126.2 (s, 2F, CF₂). GC-MS m/z 271 (M⁺).

1-(4-(Perfluoropropyl)phenyl)ethanone (4h)

Obtained as a yellow oil in 71% yield (102 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.64. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.3 Hz, 2H, H₁), 7.70 (d, J = 8.3 Hz, 2H, H₂), 2.65 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 196.9 (s), 139.8 (s), 132.8 (t, J = 24.2 Hz), 128.4 (s), 127.2 (t, J = 6.4 Hz), 117.9 (qt, J = 288.6, 34.0 Hz), 114.9 (tt, J = 256.7, 31.4 Hz), 108.6 (tq, J = 265.4, 38.2 Hz), 26.7 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.0 (t, J = 9.8 Hz, 3F, CF₃), -112.3 (q, J = 9.7 Hz, 2F, CF₂), -126.4 (s, 2F, CF₂). IR (KBr): v 2950, 1692, 1348, 1266, 1231, 1182, 1118, 902, 827, 722, 649 cm⁻¹. GC-MS m/z 288 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₇F₇O: 288.0385; found: 288.0382.

Methyl 4-(perfluoropropyl)benzoate (4i)⁸

Obtained as a yellow oil in 78% yield (118 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.1 Hz, 2H, H₁), 7.67 (d, J = 8.3 Hz, 2H, H₂), 3.96 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.8 (s), 133.6 (t, J = 3.7 Hz), 132.8 (t, J = 24.3 Hz), 129.8 (s), 126.9 (t, J = 6.5 Hz), 117.9 (qt, J = 288.7, 32.7 Hz), 114.9 (tt, J = 256.6, 31.3 Hz), 108.6 (tq, J = 265.2, 38.1 Hz), 52.5 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.0 (t, J = 9.8 Hz, 3F, CF₃), -112.3 (q, J = 9.8 Hz, 2F, CF₂), -126.4 (s, 2F, CF₂). GC-MS m/z 304 (M⁺).

1-Methoxy-4-(perfluoropropyl)benzene (4k)⁸

Obtained as a yellow oil in 87% yield (120 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.81. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 2H, H₂), 6.99 (d, J = 7.9 Hz, 2H, H₁), 3.86 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (t, J = 1.6 Hz), 128.3 (t, J = 6.5 Hz), 120.7 (t, J = 24.7 Hz), 117.9 (qt, J = 288.6, 34.0 Hz), 114.9 (tt, J = 256.7, 31.4 Hz), 108.6 (tq, J = 265.4, 38.2 Hz), 114.0 (s), 55.4 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.1 (t, J = 9.8 Hz, 3F, CF₃), -110.7 (q, J = 9.8 Hz, 2F, CF₂), -126.5 (s, 2F, CF₂). GC-MS m/z 276 (M⁺).

1-Methoxy-2-(perfluoropropyl)benzene (4l) 9

Obtained as a yellow oil in 70% yield (97 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.89. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.47 (m, 2H, H₁, H₂), 7.06 – 7.01 (m, 2H, H₃, H₄), 3.87 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (t, J = 2.6 Hz), 133.6 (s), 129.1 (t, J = 8.9 Hz), 120.3 (s), 116.9 (t, J = 22.7 Hz), 117.9 (qt, J = 288.6, 34.0 Hz), 114.9 (tt, J = 256.7, 31.4 Hz), 108.6 (tq, J = 265.4, 38.2 Hz), 55.90 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.5 (t, J = 9.6 Hz, 3F, CF₃), -108.6 (q, J = 9.6 Hz, 2F, CF₂), -125.8 (s, 2F, CF₂). GC-MS m/z 276 (M⁺).

1,3-Dimethoxy-2-(perfluoropropyl)benzene (4m)

Obtained as a yellow oil in 53% yield (81 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.79. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (t, J = 8.2 Hz, 1H, H₂), 6.62 (d, J = 8.4 Hz, 2H, H₁), 3.82 (s, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 160.6 (t, J = 2.2 Hz), 133.4 (s), 117.8 (qt, J = 288.5, 34.1 Hz), 114.9 (tt, J = 255.6, 31.5 Hz), 109.6 (tq, J = 265.4, 38.2 Hz), 105.3 (s), 104.7 (s), 56.4 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.7 (t, J = 9.3 Hz, 3F, CF₃), -104.1 (q, J = 10.5 Hz, 2F, CF₂), -126.7 (s, 2F, CF₂). IR (KBr): v 2946, 2846, 1595, 1478, 1435, 1346, 1299, 1258, 1225, 1193, 1137, 1112, 1090, 1053, 1022, 957, 922, 903, 883, 784, 757, 722, 683, 650 cm⁻¹. GC-MS m/z 306 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₉F₇O₂: 306.0491; found: 306.0485.

3-(Perfluoropropyl)-9-phenyl-9H-carbazole (40)

Obtained as a white solid in 91% yield (187 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.85. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H, H₁), 8.26 (d, J = 7.8 Hz, 1H, H₂), 7.70 – 7.66 (m, 3H, H₃, H₄, H₇), 7.64 – 7.47 (m, 6H, H₅, H₆, H₈, H₉), 7.43 – 7.40 (t, J = 7.3 Hz, 1H, H₁₀). ¹³C NMR (101 MHz, CDCl₃) δ 142.6 (s), 141.7 (s), 137.0 (s), 130.1 (s), 128.2 (s), 127.2 (s), 127.0 (s), 124.1 (t, J = 6.3 Hz), 123.3 (s), 122.8 (s), 120.9 (s), 120.6 (s), 120.0 (t, J = 24.6 Hz), 119.5 (t, J = 6.9 Hz), 117.9 (qt, J = 288.6, 34.0 Hz), 116.2 (tt, J = 251.3, 30.7 Hz), 110.3 (s), 109.9 (s), 109.1 (tq, J = 263.0, 37.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -79.9 (t, J = 9.9 Hz, 3F, CF₃), -109.2 (q, J = 9.9 Hz, 2F, CF₂), -126.0 (s, 2F, CF₂). IR (KBr): v 1631, 1600, 1502, 1455, 1437, 1345, 1323, 1302, 1254, 1231, 1195, 1176, 1107, 1063, 1026, 1012, 948, 932, 908, 883, 814, 790, 761, 730, 697, 689, 641 cm⁻¹. GC-MS m/z 411 (M⁺). HRMS (EI) m/z: calcd. for C₂₁H₁₂F₇N: 411.0858; found: 411.0857.

Methyl 6-(perfluoropropyl)picolinate (4p)

Obtained as a yellow oil in 73% yield (111 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 7.9 Hz, 1H, H₁), 8.06 (t, J = 7.9 Hz, 1H, H₂), 7.85 (d, J = 7.9 Hz, 1H, H₃), 4.01 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 164.7 (s), 148.7 (s), 147.9 (t, J = 26.0 Hz), 138.5 (s), 127.5 (s), 125.2 (t, J = 4.4 Hz), 117.8 (qt, J = 288.9, 33.8 Hz), 112.5 (tt, J = 258.1, 30.9 Hz), 108.8 (tq, J = 266.9, 38.4 Hz), 53.2 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.2 (t, J = 9.3 Hz, 3F, CF₃), -114.7 (q, J = 9.3 Hz, 2F, CF₂), -126.2 (s, 2F, CF₂). IR (KBr): v 2986, 1731, 1588, 1441, 1352, 1323, 1208, 1103, 1085, 1059, 984, 946, 904, 829, 769, 724, 649 cm⁻¹. GC-MS m/z 305 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆F₇NO₂: 305.0287; found: 305.0282.

2-(Perfluoropropyl)quinoline (4s) ¹⁰

Obtained as a orange oil in 70% yield (104 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.85. ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.33 (m, 1H, H₂), 8.25 (d, J = 8.6 Hz, 1H, H₁), 7.92 – 7.89 (m, 1H, H₆), 7.85 – 7.80 (m, 1H, H₅), 7.73 (d, J = 8.5 Hz, 1H, H₃), 7.71 – 7.65 (m, 1H, H₄). ¹³C NMR (101 MHz, CDCl₃) δ 147.5 (t, J = 25.0 Hz), 147.4 (s), 137.7 (s), 130.7 (s), 130.3 (s), 128.7 (s), 128.6 (t, J = 1.2 Hz), 127.6 (s), 118.2 (t, J = 4.1 Hz), 118.0 (qt, J = 288.6, 33.2 Hz), 113.0 (tt, J = 257.8, 30.6 Hz), 108.8 (tq, J = 266.9, 38.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ - 80.1 (q, J = 9.2 Hz, 3F, CF₃), -114.4 (q, J = 9.2 Hz, 2F, CF₂), -126.1 (s, 2F, CF₂). GC-MS m/z 297 (M⁺).

2-(Perfluoropropyl)quinoxaline (4t)

Obtained as a yellow oil in 67% yield (100 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H, H₁), 8.32 – 8.17 (m, 2H, H₂, H₅), 8.00 – 7.87 (m, 2H, H₃, H₄). ¹³C NMR (101 MHz, CDCl₃) δ 143.5 (t, J = 1.3 Hz), 142.5 (t, J = 25.7 Hz), 141.9 (tt, J = 4.4, 1.3 Hz), 141.2 (s), 132.6 (s), 131.5 (s), 130.2 (s), 129.5 (s), 117.8 (qt, J = 288.9, 33.7 Hz), 112.7 (tt, J = 259.4, 31.2 Hz), 108.9 (tq, J = 266.9, 36.4 Hz). ¹⁹F NMR (376 MHz,

CDCl₃) δ -80.0 (dd, J = 17.2, 8.6 Hz, 3F, CF₃), -114.8 (qd, J = 9.3, 3.2 Hz, 2F, CF₂), -126.0 (s, 2F, CF₂). IR (KBr): v 2918, 2038, 1727, 1570, 1494, 1470, 1352, 1300, 1264, 1229, 1205, 1183, 1152, 1118, 1083, 1055, 1010, 976, 920, 903, 854, 839, 798, 763, 743, 650 cm⁻¹. GC-MS m/z 298 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₅F₇N₂: 298.0341; found: 298.0334.

2-Methyl-4-(perfluoropropyl)aniline (4v)

Obtained as a yellow oil in 61% yield (84 mg). R_f (*n*-pentane/diethyl ether 10:3) = 0.54. ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.21 (m, 2H, H₁, H₂), 6.70 (d, J = 8.6 Hz, 1H, H₃), 3.91 (s, 2H, NH₂), 2.19 (s, 3H, CH). ¹³C NMR (101 MHz, CDCl₃) δ 147.8 (t, J = 1.5 Hz), 130.0 (s), 128.7 (tt, J = 6.5, 1.2 Hz), 125.7 (tt, J = 6.8, 1.3 Hz), 121.7 (s), 120.5 – 110.8 (m, $CF_2CF_2CF_3$), 114.0 (s), 17.2 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.0 (t, J = 10.0 Hz, 3F, CF₃), -110.2 (q, J = 10.0 Hz, 2F, CF₂), -126.5 (s, 2F, CF₂). GC-MS m/z 275 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₈F₇N: 275.0545; found: 275.0543.

1-tert-Butyl-4-(perfluorobutyl)benzene (5a)⁸

Obtained as a colourless oil in 84% yield (148 mg). R_f (*n*-pentane) = 0.90. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.52 (m, 4H, H₁, H₂), 1.37 (s, 9H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 155.4 (t, *J* = 1.6 Hz), 126.6 (t, *J* = 6.5 Hz), 125.9 (t, *J* = 24.4 Hz), 125.6 (s), 122.0 – 102.3 (m, *CF*₂*CF*₂*CF*₃), 34.9 (s), 31.1 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 – -81.1 (m, 3F, CF₃), -110.6 (td, *J* = 13.3, 2.3 Hz, 2F, CF₂), -122.8 (h, *J* = 9.7 Hz, 2F, CF₂), -125.5 – -125.8 (m, 2F, CF₂). GC-MS m/z 352 (M⁺).

1,3-Dimethyl-5-(perfluorobutyl)benzene (5b)

Obtained as a colourless oil in 80% yield (130 mg). R_f (*n*-pentane) = 0.90. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 3H, H₁, H₂), 2.38 (s, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 138.4 (s), 133.5 (t, J = 1.7 Hz), 128.7 (t, J = 23.8 Hz), 124.4 (tt, J = 6.6, 1.4 Hz), 120.0 – 101.3 (m, $CF_2CF_2CF_2CF_3$). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (tt, J = 9.9, 3.0 Hz, 3F, CF₃), -110.7 (t, J = 13.3 Hz, 2F, CF₂), -122.7 (h, J = 9.8 Hz, 2F, CF₂), -125.5 – -125.8 (m, 2F, CF₂). IR (KBr): v 2921, 2174, 2153, 1352, 1213, 1132, 1029, 882, 858, 804, 780 cm⁻¹. GC-MS m/z 324 (M⁺). HRMS (EI) m/z: calcd. for C₁₂H₉F₉: 324.0561; found: 324.0556.

4-(Perfluorobutyl)biphenyl (5c)⁸

Obtained as a white solid in 97% yield (180 mg). $R_f(n\text{-pentane}) = 0.75$. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.67 (m, 4H, H₄, H₅), 7.65 – 7.64 (m, 2H, H₃), 7.55 – 7.49 (m, 2H, H₂), 7.47 – 7.42 (m, 1H, H₁). ¹³C NMR (101 MHz, CDCl₃) δ 144.9 (t, J = 1.6 Hz), 139.7 (s), 129.0 (s), 128.4 (s), 127.5 – 127.1 (m), 123.4 – 100.2 (m, $CF_2CF_2CF_2CF_3$). ¹⁹F NMR (376 MHz,

CDCl₃) δ -81.1 – -81.2 (m, 3F, CF₃), -110.8 (t, *J* = 13.4 Hz, 2F, CF₂), -122.7 (dd, *J* = 19.5, 9.7 Hz, 2F, CF₂), -124.2 – -127.0 (m, 2F, CF₂). GC-MS m/z 372 (M⁺).

1-(Perfluorobutyl)naphthalene (5e)

Obtained as a yellow oil in 44% yield (76 mg). R_f (*n*-pentane) = 0.81. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.9 Hz, 1H, H₁), 8.09 (d, J = 8.2 Hz, 1H, H₇), 7.96 (d, J = 7.9 Hz, 1H, H₃), 7.86 (d, J = 7.3 Hz, 1H, H₄), 7.66 – 7.56 (m, 3H, H₂, H₅, H₆). ¹³C NMR (101 MHz, CDCl₃) δ 134.1 (s), 133.4 (t, J = 1.3 Hz), 130.3 (t, J = 1.6 Hz), 129.0 (s), 127.9 (t, J = 9.9 Hz), 127.6 (t, J = 1.2 Hz), 126.7 (s), 126.4 (s), 124.8 (tt, J = 6.4, 3.3 Hz), 124.2 (s), 121.9 – 108.0 (m, $CF_2CF_2CF_2CF_3$). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (tt, J = 9.8, 2.8 Hz, 3F, CF₃), -104.6 (t, J = 14.3 Hz, 2F, CF₂), -121.0 – -121.2 (m, 2F, CF₂), -125.4 – -125.7 (m, 2F, CF₂). IR (KBr): v 2916, 2848, 1580, 1516, 1349, 1278, 1230, 1193, 1077, 976, 951, 923, 880, 785, 768, 737, 727, 669, 621, 535, 517 cm⁻¹. GC-MS m/z 346 (M⁺). HRMS (EI) m/z: calcd. for C₁₄H₇F₉: 346.0404; found: 346.0400.

2-(Perfluorobutyl)-9H-fluorene (5f)¹¹

Obtained as a white solid in 95% yield (182 mg). $R_f(n\text{-pentane}) = 0.68$. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.80 (m, 2H, H₂, H₃), 7.76 (s, 1H, H₁), 7.66 – 7.56 (m, 2H, H₄, H₇), 7.47 – 7.35 (m, 2H, H₅, H₆), 3.95 (s, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 145.4 (t, J = 1.7 Hz), 143.9 (s), 143.4 (s), 140.2 (s), 128.0 (s), 127.1 (s), 126.8 (t, J = 24.0 Hz), 125.7 (tt, J = 6.8, 1.4 Hz), 125.2 (s), 123.5 (tt, J = 6.7, 1.3 Hz), 120.7 (s), 119.8 (s), 121.4 – 105.7 (m, $CF_2CF_2CF_2CF_3$), 36.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (tt, J = 9.7, 2.8 Hz, 3F, CF₃), -109.9 (td, J = 13.3, 2.4 Hz, 2F, CF₂), -122.6 (dd, J = 19.5, 9.8 Hz, 2F, CF₂), -125.5 – -125.6 (m, 2F, CF₂). GC-MS m/z 384 (M⁺).

4-(Perfluorobutyl)benzonitrile (5g)⁸

Obtained as a yellow oil in 35% yield (56 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.66. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.2 Hz, 2H, H₁), 7.73 (d, J = 8.3 Hz, 2H, H₂). ¹³C NMR (101 MHz, CDCl₃) δ 133.2 (t, J = 24.5 Hz), 132.5 (s), 127. 8 (tt, J = 6.7, 1.6 Hz), 117.4 (s), 120.5 – 112.2 (m, $CF_2CF_2CF_2CF_3$), 116.4 (t, J = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (tt, J = 9.7, 2.6 Hz, 3F, CF₃), -111.9 (t, J = 13.3 Hz, 2F, CF₂), -122.5 – -122.7 (m, 2F, CF₂), -125.4 – -125.6 (m, 2F, CF₂). GC-MS m/z 321 (M⁺).

1-(4-(Perfluorobutyl)phenyl)ethanone (5h)⁸

Obtained as a yellow oil in 65% yield (110 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.9 Hz, 2H, H₁), 7.73 (d, J = 7.8 Hz, 2H, H₂), 2.67 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 196.9 (s), 139.8 (t, J = 1.5 Hz), 132.9 (t, J = 24.2 Hz), 128.4 (s), 127.3 (t, J = 6.5 Hz), 122.8 – 102.8 (m, $CF_2CF_2CF_2CF_3$), 26.7 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (tt, J = 9.7, 2.5 Hz, 3F, CF₃), -111.5 (t, J = 13.0 Hz, 2F, CF₂), -122.7 (d, J = 7.7 Hz, 2F, CF₂), -125.5 – -125.6 (m, 2F, CF₂). GC-MS m/z 338 (M⁺).

Methyl 4-(perfluorobutyl)benzoate (5i)⁸

Obtained as a yellow oil in 80% yield (142 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.69. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.9 Hz, 2H, H₁), 7.67 (d, J = 7.7 Hz, 2H, H₂), 3.95 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.8 (s), 133.6 (t, J = 1.6 Hz), 132.9 (t, J = 24.2 Hz), 129.8 (s), 126.9 (t, J = 6.5 Hz), 124.5 – 101.7 (m, $CF_2CF_2CF_2CF_3$), 52.5 (s). ¹⁹F NMR

(376 MHz, CDCl₃) δ -81.2 (tt, *J* = 9.5, 2.8 Hz, 3F, CF₃), -111.5 (t, *J* = 13.3 Hz, 2F, CF₂), -122.8 (d, *J* = 8.8 Hz, 2F, CF₂), -125.6 - -125.7 (m, 2F, CF₂). GC-MS m/z 354 (M⁺).

1-Methoxy-4-(perfluorobutyl)benzene (5k)⁸

Obtained as a yellow oil in 93% yield (152 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.78. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.9 Hz, 2H, H₂), 6.99 (d, J = 7.5 Hz, 2H, H₁), 3.86 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (t, J = 1.6 Hz), 128.4 (t, J = 6.6 Hz), 120.8 (t, J = 24.8 Hz), 122.8 – 107.2 (m, $CF_2CF_2CF_2CF_3$), 113.9 (s), 55.3 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.2 (t, J = 9.7 Hz, 3F, CF₃), -110.0 (t, J = 13.3 Hz, 2F, CF₂), -122.9 (dd, J = 17.4, 9.3 Hz, 2F, CF₂), -124.6 – -126.8 (m, 2F, CF₂). GC-MS m/z 326 (M⁺).

1-Methoxy-2-(perfluorobutyl)benzene (5l)⁸

Obtained as a yellow oil in 61% yield (99 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.94. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.47 (m, 2H, H₁, H₂), 7.08 – 6.99 (m, 2H, H₃, H₄), 3.87 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.5 (t, J = 2.8 Hz), 133.6 (t, J = 1.4 Hz), 129.2 (t, J = 8.9 Hz), 120.3 (s), 119.6 – 112.8 (m, $CF_2CF_2CF_2CF_3$), 112.5 (s), 112.4 (s), 55.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (tt, J = 10.1, 2.7 Hz, 3F, CF₃), -107.9 (t, J = 13.7 Hz, 2F, CF₂), -122.0 – -122.2 (m, 2F, CF₂), -126.0 – -126.2 (m, 2F, CF₂). GC-MS m/z 326 (M⁺).

1,3-Dimethoxy-2-(perfluorobutyl)benzene (5m)

Obtained as a yellow oil in 39% yield (69 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.48. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (t, J = 8.4 Hz, 1H, H₂), 6.62 (d, J = 8.4 Hz, 2H, H₁), 3.83 (s, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 160.7 (t, J = 2.4 Hz), 133.5 (s), 123.3 – 106.9 (m, $CF_2CF_2CF_2CF_3$), 105.4 (s), 104.8 (s), 56.5 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (ddd, J =

12.5, 6.8, 2.7 Hz, 3F, CF₃), -111.1 (t, J = 13.4 Hz, 2F, CF₂), -122.7 (dd, J = 18.8, 9.3 Hz, 2F, CF₂), -125.6 (td, J = 13.0, 2.5 Hz, 2F, CF₂). IR (KBr): v 2970, 2856, 1585, 1488, 1475, 1366, 1279, 1248, 1235, 1173, 1167, 1162, 1093, 1013, 1042, 967, 932, 973, 843, 774, 759, 732, 684, 653 cm⁻¹. GC-MS m/z 356 (M⁺). HRMS (EI) m/z: calcd. for C₁₂H₉F₉O₂: 356.0459; found: 356.0452.

3-(perfluorobutyl)-9-phenyl-9H-carbazole (50)

Obtained as a white solid in 96% yield (221 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.85. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H, H₁), 8.28 (d, J = 7.7 Hz, 1H, H₂), 7.87 – 7.33 (m, 10H, H₃, H₄, H₅, H₆, H₇, H₈, H₉, H₁₀). ¹³C NMR (101 MHz, CDCl₃) δ 142.6 (s), 141.7 (s), 137.0 (s), 130.1 (s), 128.2 (s), 127.2 (s), 127.0 (s), 124.2 (t, J = 6.3 Hz), 123.3 (s), 122.9 (s), 120.9 (s), 120.6 (s), 120.1 (t, J = 24.4 Hz), 119.6 (t, J = 6.9 Hz), 123.8 – 105.5 (m, $CF_2CF_2CF_2CF_3$), 110.3 (s), 109.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (t, J = 9.6 Hz, 3F, CF₃), -108.4 (t, J = 13.3 Hz, 2F, CF₂), -122.3 (dd, J = 17.7, 8.8 Hz, 2F, CF₂), -125.4 (t, J = 12.6 Hz, 2F, CF₂). IR (KBr): v 1599, 1503, 1459, 1437, 1350, 1323, 1258, 1234, 1203, 1131, 1078, 904, 871, 761, 728, 717, 697, 649, 604 cm⁻¹. GC-MS m/z 461 (M⁺). HRMS (EI) m/z: calcd. for C₂₂H₁₂F₉N: 461.0826; found: 461.0821.

Methyl 6-(perfluorobutyl)picolinate (5p)

Obtained as a colourless oil in 68% yield (121 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.29. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 7.8 Hz, 1H, H₁), 8.06 (t, J = 7.9 Hz, 1H, H₂), 7.86 (d, J = 7.9 Hz, 1H, H₃), 4.02 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 164.7 (s), 148.7 (s), 148.1 (t, J = 26.0 Hz), 138.4 (s), 127.5 (t, J = 1.3 Hz), 125.3 (t, J = 4.5 Hz), 121.3 – 107.2 (m, $CF_2CF_2CF_2CF_3$), 53.2 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (tt, J = 9.7, 2.5 Hz, 3F, CF₃), -113.9 (td, *J* = 13.0, 2.2 Hz, 2F, CF₂), -122.4 – -122.5 (m, 2F, CF₂), -125.5 – -125.6 (m, 2F, CF₂). IR (KBr): v 2996, 1741, 1688, 1451, 1362, 1333, 1218, 1113, 1095, 1060, 974, 956, 914, 839, 779, 734, 659 cm⁻¹. GC-MS m/z 355 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₆F₉NO₂: 355.0255; found: 355.0258.

2-(Perfluorobutyl)quinoline (5s) ¹²

Obtained as a orange oil in 68% yield (118 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.74. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.6 Hz, 1H, H₂), 8.26 (d, J = 8.6 Hz, 1H, H₁), 7.92 (d, J = 8.2 Hz, 1H, H₆), 7.83 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H, H₅), 7.74 (d, J = 8.6 Hz, 1H, H₃), 7.71 – 7.65 (m, 1H, H₄). ¹³C NMR (101 MHz, CDCl₃) δ 147.5 (t, J = 25.4 Hz), 147.4 (s), 137.7 (s), 130.7 (s), 130.3 (s), 128.7 (s), 128.6 (s), 127.6 (s), 118.2 (t, J = 3.9 Hz), 122.9 – 105.7 (m, $CF_2CF_2CF_2CF_3$). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (tt, J = 9.7, 2.5 Hz, 3F, CF₃), -113.6 (td, J = 12.8, 2.4 Hz, 2F, CF₂), -122.3 – -122.4 (m, 2F, CF₂), -125.5 – -125.6 (m, 2F, CF₂). GC-MS m/z 347 (M⁺).

2-(Perfluorobutyl)quinoxaline (5t)

Obtained as a colourless oil in 68% yield (118 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H, H₁), 8.33 – 8.16 (m, 2H, H₂, H₅), 7.96 – 7.88 (m, 2H, H₃, H₄). ¹³C NMR (101 MHz, CDCl₃) δ 143.5 (s), 142.6 (t, J = 25.7 Hz), 141.9 (t, J = 4.4 Hz), 132.5 (s), 131.5 (s), 130.2 (s), 129.5 (s), 129.2 (s), 123.4 – 103.5 (m, $CF_2CF_2CF_2CF_3$). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (tt, J = 9.7, 2.6 Hz, 3F, CF₃), -114.0 (td, J = 12.8, 2.7 Hz, 2F, CF₂), -122.3 – -122.4 (m, 2F, CF₂), -125.4 – -125.5 (m, 2F, CF₂). IR (KBr): v 1586, 1571, 1497, 1470, 1405, 1354, 1301, 1236, 1201, 1135, 1097, 1017, 904, 883, 843, 830, 812, 762, 733, 664, 649 cm⁻¹. GC-MS m/z 348 (M⁺). HRMS (EI) m/z: calcd. for C₁₂H₅F₉N₂: 348.0309; found: 348.0306.

Data for compounds 6

1-tert-Butyl-4-(perfluoropentyl)benzene (6a)

Obtained as a colorless oil in 89% yield (179 mg). $R_f(n\text{-pentane}) = 0.85$. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.48 (m, 4H, H₁, H₂), 1.36 (s, 9H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 155.4 (t, J = 1.6 Hz), 126.6 (tt, J = 6.5, 1.3 Hz), 126.0 (t, J = 24.2 Hz), 125.5 (s), 121.5 – 103.8 (m, $CF_2CF_2CF_2CF_2CF_3$), 34.9 (s), 31.0 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.6 – -81.5 (m, 3F, CF₃), -110.5 – -110.6 (m, 2F, CF₂), -122.1 (d, J = 12.3 Hz, 2F, CF₂), -122.3 – -122.4 (m, 2F, CF₂), -126.2 – -126.4 (m, 2F, CF₂). IR (KBr): v 2967, 1615, 1464, 1412, 1359, 1300, 1232, 1198, 1140, 1105, 1075, 1053, 1053, 905, 858, 839, 823, 724, 692, 650 cm⁻¹. GC-MS m/z 402 (M⁺). HRMS (EI) m/z: calcd. for C₁₅H₁₃F₁₁: 402.0842; found: 402.0844.

1,3-Dimethyl-5-(perfluoropentyl)benzene (6b)

Obtained as a colorless oil in 78% yield (146 mg). R_f (*n*-pentane) = 0.85. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (s, 2H, H₁), 7.22 (s, 1H, H₂), 2.40 (s, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 138.4 (s), 133.5 (t, *J* = 1.6 Hz), 128.9 (t, *J* = 23.7 Hz), 124.4 (tt, *J* = 6.5, 1.3 Hz), 120.2 – 104.6 (m, *CF*₂*CF*₂*CF*₂*CF*₃), 21.0 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (tt, *J* = 9.9, 2.6 Hz, 3F, CF₃), -110.6 (t, *J* = 14.6 Hz, 2F, CF₂), -122.0 – -122.1 (m, 2F, CF₂), -122.4 – -122.5 (m, 2F, CF₂), -126.3 – -126.4 (m, 2F, CF₂). IR (KBr): v 2979, 1357, 1323, 1237, 1197, 1143, 1112, 1078, 904, 873, 859, 783, 767, 722, 680, 649 cm⁻¹. GC-MS m/z 374 (M⁺). HRMS (EI) m/z: calcd. for C₁₃H₉F₁₁: 374.0529; found: 374.0526.

4-(Perfluoropentyl)biphenyl (6c)

Obtained as a white solid in 81% yield (171 mg). R_f (*n*-pentane) = 0.80. ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.62 (m, 6H, H₃, H₄, H₅), 7.55 – 7.39 (m, 3H, H₁, H₂). ¹³C NMR (101 MHz, CDCl₃) δ 144.9 (s), 139.7 (s), 129.0 (s), 128.3 (s), 127.9 – 126.3 (m), 123.6 – 101.3 (m, $CF_2CF_2CF_2CF_2CF_3$). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (tt, J = 9.9, 2.5 Hz, 3F, CF₃), -110.6 (t, J = 14.4 Hz, 2F, CF₂), -122.0 (s, 2F, CF₂), -122.2 – -122.3 (m, 2F, CF₂), -126.2 – -126.3 (m, 2F, CF₂). IR (KBr): v 1615, 1489, 1408, 1360, 1298, 1232, 1197, 1140, 1105, 1077, 1055, 1009, 967, 905, 859, 809, 790, 768, 729, 650, 633 cm⁻¹. GC-MS m/z 422 (M⁺). HRMS (EI) m/z: calcd. for C₁₇H₉F₁₁: 422.0529; found: 422.0527.

1-(Perfluoropentyl)naphthalene (6e)

Obtained as a colourless oil in 37% yield (73 mg). $R_f(n\text{-pentane}) = 0.81$. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.5 Hz, 1H, H₁), 8.05 (d, J = 8.2 Hz, 1H, H₇), 7.92 (d, J = 8.0 Hz, 1H, H₃), 7.83 (d, J = 7.4 Hz, 1H, H₄), 7.69 – 7.48 (m, 3H, H₂, H₅, H₆). ¹³C NMR (101 MHz, CDCl₃) δ 134.1 (s), 133.4 (s), 130.3 (s), 128.9 (s), 128.0 (t, J = 9.9 Hz), 127.6 (s), 126.4 (s), 124.8 (tt, J = 6.2, 3.2 Hz), 124.6 (s), 124.2 (s), 122.4 – 105.0 (m, $CF_2CF_2CF_2CF_2CF_3$). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 (tt, J = 10.0, 2.6 Hz, 3F, CF₃), -104.5 (t, J = 15.2 Hz, 2F, CF₂), -120.3 – -120.4 (m, 2F, CF₂), -122.2 – -122.3 (m, 2F, CF₂), -126.0 – -126.1 (m, 2F, CF₂). IR (KBr): v 2251, 2012, 2001, 1939, 1515, 1349, 1238, 1190, 1142, 1102, 903, 856, 827, 778, 718, 650, 621 cm⁻¹. GC-MS m/z 396 (M⁺). HRMS (EI) m/z: calcd. for C₁₅H₇F₁₁: 396.0372; found: 396.0369.

2-(Perfluoropentyl)-9H-fluorene (6f)

Obtained as a white solid in 75% yield (163 mg). $R_f(n\text{-pentane}) = 0.70$. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.80 (m, 2H, H₂, H₃), 7.76 (s, 1H, H₁), 7.60 (t, J = 7.6 Hz, 2H, H₄, H₇), 7.47

-7.33 (m, 2H, H₅, H₆), 3.96 (s, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 145.4 (s), 143.8 (s), 143.4 (s), 140.2 (s), 128.0 (s), 127.1 (s), 126.8 (s), 125.7 (t, *J* = 6.6 Hz), 125.2 (s), 123.5 (t, *J* = 6.6 Hz), 120.7 (s), 119.8 (s), 119.5 – 104.9 (m, *CF*₂*CF*₂*CF*₂*CF*₂*CF*₃), 36.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 (tt, *J* = 9.9, 2.5 Hz, 3F, CF₃), -109.7 (t, *J* = 14.4 Hz, 2F, CF₂), -121.8 – -121.9 (m, 2F, CF₂), -122.2 – -122.3 (m, 2F, CF₂), -126.2 – -126.3 (m, 2F, CF₂). IR (KBr): v 2967, 2153, 1964, 1618, 1427, 1360, 1237, 1199, 1141, 1102, 905, 841, 803, 782, 729, 692, 650 cm⁻¹. GC-MS m/z 434 (M⁺). HRMS (EI) m/z: calcd. for C₁₈H₉F₁₁: 434.0529; found: 434.0524.

4-(Perfluoropentyl)benzonitrile (6g)

Obtained as a yellow oil in 39% yield (72 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.87. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2H, H₁), 7.73 (d, J = 8.3 Hz, 2H, H₂). ¹³C NMR (101 MHz, CDCl₃) δ 133.2 (t, J = 24.6 Hz), 132.5 (s), 127.7 (t, J = 6.5 Hz), 117.4 (s), 116.3 (t, J = 1.6 Hz), 123.8 – 105.5 (m, $CF_2CF_2CF_2CF_2CF_3$). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.4 – -81.2 (m, 3F, CF₃), -111.7 (t, J = 14.3 Hz, 2F, CF₂), -121.9 (d, J = 2.6 Hz, 2F, CF₂), -122.1 – -122.3 (m, 2F, CF₂), -125.5 – -127.2 (m, 2F, CF₂). IR (KBr): v 1616, 1479, 1428, 1240, 902, 859,823, 800, 783, 722, 649 cm⁻¹. GC-MS m/z 371 (M⁺). HRMS (EI) m/z: calcd. for C₁₂H₄F₁₁N: 371.0168; found: 371.0161.

1-(4-(Perfluoropentyl)phenyl)ethanone (6h)

Obtained as a yellow oil in 70% yield (136 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 2H, H₁), 7.70 (d, J = 8.3 Hz, 2H, H₂), 2.65 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 196.9 (s), 139.8 (t, J = 1.5 Hz), 132.9 (t, J = 24.1 Hz), 128.4 (s), 127.3 (t, J = 6.5 Hz), 120.8 – 100.5 (m, $CF_2CF_2CF_2CF_2CF_3$), 26.7 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 – -80.9 (m, 3F, CF₃), -111.3 (t, J = 14.2 Hz, 2F, CF₂), -122.0 – -122.1 (m, 2F, CF₂), -122.2 – -122.3 (m, 2F, CF₂), -126.2 – -126.3 (m, 2F, CF₂). IR (KBr): v 2918, 2849, 1694, 1409, 1359, 1298, 1263, 1231, 1198, 1140, 1106, 1083, 1051,

1018, 906, 861, 730, 689, 659 cm⁻¹. GC-MS m/z 388 (M⁺). HRMS (EI) m/z: calcd. for $C_{13}H_7F_{11}O$: 388.0321; found: 388.0322.

Methyl 4-(perfluoropentyl)benzoate (6i)

Obtained as a yellow oil in 65% yield (131 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.74. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.7 Hz, 2H, H₁), 7.68 (d, J = 8.4 Hz, 2H, H₂), 3.96 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.8 (s), 133.6 (t, J = 1.5 Hz), 132.9 (t, J = 24.1 Hz), 129.8 (s), 127.0 (tt, J = 6.5, 1.4 Hz), 124.5 – 104.9 (m, $CF_2CF_2CF_2CF_2CF_3$), 52.5 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 (tt, J = 9.7, 2.6 Hz, 3F, CF₃), -111.2 (t, J = 14.2 Hz, 2F, CF₂), -122.0 – -122.1 (m, 2F, CF₂), -122.2 – -122.3 (m, 2F, CF₂), -126.2 – -126.3 (m, 2F, CF₂). IR (KBr): v 2975, 1769, 1678, 1240, 1106, 902, 874, 869, 785, 767, 722, 649 cm⁻¹. GC-MS m/z 404 (M⁺). HRMS (EI) m/z: calcd. for C₁₃H₇F₁₁O₂: 404.0270; found: 404.0268.

1-Methoxy-4-(perfluoropentyl)benzene (6k)

Obtained as a colourless oil in 85% yield (160 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.84. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.7 Hz, 2H, H₂), 6.99 (d, J = 8.8 Hz, 2H, H₁), 3.86 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (t, J = 1.6 Hz), 128.4 (t, J = 6.6 Hz), 120.9 (t, J = 24.8 Hz), 122.8 – 106.2 (m, $CF_2CF_2CF_2CF_3$), 113.9 (s), 55.3 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 – -81.0 (m, 3F, CF₃), -109.8 (t, J = 14.0 Hz, 2F, CF₂), -118.9 – -124.1 (m, 4F, CF₂CF₂), -124.9 – -128.0 (m, 2F, CF₂). IR (KBr): v 2936, 1615, 1518, 1359, 1310, 1238, 1199, 1180, 1142, 1102, 1030, 903, 856, 835, 775, 694, 649, 622, 554 cm⁻¹. GC-MS m/z 376 (M⁺). HRMS (EI) m/z: calcd. for C₁₂H₇F₁₁O: 376.0321; found: 376.0320.

1-Methoxy-2-(perfluoropentyl)benzene (6l)

Obtained as a yellow oil in 69% yield (130 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.71. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.46 (m, 2H, H₁, H₂), 7.09 – 6.99 (m, 2H, H₃, H₄), 3.87 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.5 (t, J = 2.8 Hz), 133.5 (t, J = 1.3 Hz), 129.2 (t, J = 8.9 Hz), 120.2 (s), 117.0 (t, J = 22.7 Hz), 123.6 – 104.0 (m, $CF_2CF_2CF_2CF_2CF_3$), 112.4 (s), 55.8 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (tt, J = 10.0, 2.7 Hz, 3F, CF₃), -107.8 (t, J = 14.6 Hz, 2F, CF₂), -121.4 – -121.5 (m, 2F, CF₂), -122.7 – -122.8 (m, 2F, CF₂), -126.1 – 126.3 (m, 2F, CF₂). IR (KBr): v 2969, 1605, 1496, 1466, 1263, 1238, 1198, 1141, 1064, 1027, 903, 873, 859, 723, 650 cm⁻¹. GC-MS m/z 376 (M⁺). HRMS (EI) m/z: calcd. for C₁₂H₇F₁₁O: 376.0321; found: 376.0316.

1,3-Dimethoxy-2-(perfluoropentyl)benzene (6m)

Obtained as a white solid in 50% yield (102 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.67. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (t, J = 8.5 Hz, 1H, H₂), 6.62 (d, J = 8.4 Hz, 2H, H₁), 3.82 (s, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 160.7 (t, J = 2.3 Hz), 133.4 (s), 122.7 – 109.4 (m, $CF_2CF_2CF_2CF_2CF_3$), 106.2 (s), 105.3 (s), 56.4 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (tt, J = 10.0, 2.7 Hz, 3F, CF₃), -103.3 (t, J = 14.7 Hz, 2F, CF₂), -122.0 – -122.2 (m, 2F, CF₂), -123.0 – -123.1 (m, 2F, CF₂), -126.0 – -126.2 (m, 2F, CF₂). IR (KBr): v 2964, 1596, 1478, 1435, 1259, 1238, 1138, 1092, 902, 847, 797, 722, 649 cm⁻¹. GC-MS m/z 406 (M⁺). HRMS (EI) m/z: calcd. for C₁₃H₉F₁₁O₂: 406.0427; found: 406.0423.

3-(Perfluoropentyl)-9-phenyl-9H-carbazole (60)

Obtained as a white solid in 86% yield (220 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.80. ¹H NMR (400 MHz, CDCl₃) δ 8.63 – 8.40 (m, 1H, H₁), 8.34 – 8.15 (m, 1H, H₂), 7.47 – 7.37 (m,
3H, H₃, H₄, H₇), 7.63 – 7.27 (m, 7H, H₅, H₆, H₈, H₉, H₁₀). ¹³C NMR (101 MHz, CDCl₃) δ 142.6 (s), 141.7 (s), 137.0 (s), 130.1 (s), 128.1 (s), 127.2 (s), 127.0 (s), 124.2 (s), 123.3 (s), 123.2 (s), 122.8 (s), 120.7 (s), 120.6 (s), 119.6 (s), 120.5 – 105.2 (m, *CF*₂*CF*₂*CF*₂*CF*₂*CF*₃), 110.2 (s), 109.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 (t, *J* = 10.0 Hz, 3F, CF₃), -108.3 (t, *J* = 14.3 Hz, 2F, CF₂), -121.6 – -121.7 (m, 2F, CF₂), -122.1 – -122.2 (m, 2F, CF₂), -126.1 – 126.2 (m, 2F, CF₂). IR (KBr): v 3066, 1631, 1599, 1503, 1459, 1437, 1360, 1335, 1323, 1226, 1194, 1138, 1101, 1068, 905, 857, 837, 782, 744, 733, 713, 705, 641, 585 cm⁻¹. GC-MS m/z 511 (M⁺). HRMS (EI) m/z: calcd. for C₂₃H₁₂F₁₁N: 511.0794; found: 511.0788.

Methyl 6-(perfluoropentyl)picolinate (6p)

Obtained as a yellow oil in 70% yield (142 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.40. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 7.9 Hz, 1H, H₁), 8.06 (t, J = 7.9 Hz, 1H, H₂), 7.86 (d, J = 7.9 Hz, 1H, H₃), 4.01 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 164.7 (s), 148.7 (s), 148.1 (t, J = 26.1 Hz), 138.4 (s), 127.5 (t, J = 1.2 Hz), 125.3 (t, J = 4.4 Hz), 119.9 – 104.7 (m, $CF_2CF_2CF_2CF_2CF_3$), 53.2 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (tt, J = 9.9, 2.5 Hz, 3F, CF₃), -113.8 (t, J = 13.6 Hz, 2F, CF₂), -121.7 – -121.8 (m, 2F, CF₂), -122.2 – -122.3 (m, 2F, CF₂), -126.2 – -126.3 (m, 2F, CF₂). IR (KBr): v 2976, 1729, 1688, 1451, 1362, 1333, 1239, 1203, 1142, 1060, 974, 956, 914, 849, 779, 734, 649 cm⁻¹. GC-MS m/z 405 (M⁺). HRMS (EI) m/z: calcd. for C₁₂H₆F₁₁NO₂: 405.0223; found: 405.0216.

2-(Perfluoropentyl)quinoline (6s) ¹³

Obtained as a orange oil in 56% yield (111 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.66. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.6 Hz, 1H, H₂), 8.26 (d, J = 8.6 Hz, 1H, H₁), 7.91 (d, J = 8.2 Hz, 1H, H₆), 7.84 – 7.80 (m, 1H, H₅), 7.76 – 7.63 (m, 2H, H₃, H₄). ¹³C NMR (101 MHz, CDCl₃) δ 147.7 (t, J = 25.7 Hz), 147.4 (s), 137.7 (s), 130.7 (s), 130.3 (s), 128.7 (s), 128.6 (t, J = 1.2 Hz), 127.6 (s), 118.2 (t, J = 4.1 Hz), 121.3 – 104.9 (m, $CF_2CF_2CF_2CF_2CF_3CF_3$).

¹⁹F NMR (376 MHz, CDCl₃) δ -80.7 – -81.0 (m, 3F, CF₃), -113.5 (t, *J* = 13.7 Hz, 2F, CF₂), -121.7 (dd, *J* = 11.6, 2.2 Hz, 2F, CF₂), -122.2 – -122.3 (m, 2F, CF₂), -126.1 – -126.4 (m, 2F, CF₂). GC-MS m/z 397 (M⁺).

2-(Perfluoropentyl)quinoxaline (6t)

Obtained as a yellow oil in 62% yield (123 mg). R_f (*n*-pentane/diethyl ether 10:1) = 0.77. ¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H, H₁), 8.29 – 8.19 (m, 2H, H₂, H₅), 7.96 – 7.89 (m, 2H, H₃, H₄). ¹³C NMR (101 MHz, CDCl₃) δ 143.5 (t, J = 1.4 Hz), 142.7 (t, J = 25.7 Hz), 141.9 (t, J = 4.6 Hz), 141.2 (s), 132.5 (s), 131.5 (s), 130.2 (s), 129.5 (s), 121.3 – 107.6 (m, $CF_2CF_2CF_2CF_2CF_3$). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 (tt, J = 9.8, 2.3 Hz, 3F, CF₃), -113.9 – -114.0 (m, 2F, CF₂), -121.6 – -121.7 (m, 2F, CF₂), -122.1 – -122.2 (m, 2F, CF₂), -126.1 – -126.3 (m, 2F, CF₂). IR (KBr): v 1596, 1581, 1487, 1480, 1415, 1354, 1239, 1204, 1144, 1110, 903, 722, 649, 549 cm⁻¹. GC-MS m/z 398 (M⁺). HRMS (EI) m/z: calcd. for C₁₃H₅F₁₁N₂: 398.0277; found: 398.0279.

Crystal Structure Analyses.

The suitable crystals of **1a** and **1b** were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at -50 °C, using MoK α radiation (λ 0.71073 Å). The data was corrected for Lorentz and polarisation effect with the **SMART** suite of programs and for absorption effects with SADABS.¹⁴ Structure solution and refinement were carried out with the SHELXTL suite of programs.¹⁴ The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms. Because of disordered CF₃CF₂CO₂⁻ groups in lattice in **1a**, their thermal parameters seem abnormal.

Crystallographic data for structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications nos. 1427126, and 1427127.

Complexes	1a	1b
	(CCDC-1427126)	(CCDC-1427127)
Formula	$C_{27}H_{16}CuF_5N_4O_2$	$C_{34}H_{22}CuF_7N_4O_2$
formula weight	586.99	715.11
Crystal size/mm	$0.50 \times 0.40 \times 0.20$	$0.50 \times 0.40 \times 0.20$
temperature/K	173(2)	293(2)
Crystal system	Monoclinic	Orthorhombic
space group	P21/n	Ibam
a/Å	12.346(3)	15.422(3)
<i>b</i> /Å	9.3473(19)	17.640(4)
c/Å	20.554(4)	21.739(4)
$\alpha / ^{o}$	90	90
β/°	99.01(3)	90
$\gamma/^{o}$	90	90
$V/\text{\AA}^3$	2342.7(9)	5914(2)
Ζ	4	8
$D_c/\mathrm{g~cm^{-3}}$	1.664	1.606
radiation used	Μο-Κα	Мо-Ка
μ/mm^{-1}	1.008	0.824
θ range/°	3.01 to 27.48	3.03 to 27.48
No. of unique reflections	5362	3485
Measured		
max., min. transmission	1.00 and 0.25	1.00 and 0.25
final <i>R</i> indices $[I > 2\sigma(I)]^{a, b}$	$R_1 = 0.0719$	$R_1 = 0.0555$
	$wR_2 = 0.2062$	$wR_2 = 0.1485$
<i>R</i> indices (all data)	$R_1 = 0.0812$	$R_1 = 0.0493$
	$wR_2 = 0.2142$	$wR_2 = 0.1447$
goodness-of-fit on F ^{2 c}	1.684	1.268

 Table 1. Selected crystal data, data collection and refinement parameters of complexes

 1a-b.

Computational studies

system	B3LYP/6	-31G*	B3LYP/6-311+G**		
	SCF Energy	G _{corr}	gcp-D3	SCF Energy	ΔG_{rel}
	(Hartree)	(Hartree)	(Hartree)	(Hartree)	(kcal/mol)
a	-2103.42282	0.31539	0.02361	-2104.00648	0.0
TS ₁	-2103.36893	0.31322	0.01880	-2103.95547	27.6
b	-2103.40032	0.30976	0.01642	-2103.98744	3.9
a'	-1531.80810	0.15845	0.04418	-1532.23619	1.0
TS ₁ '	-1531.74535	0.15650	0.03895	-1532.17447	35.3
b'	-1531.79051	0.15181	0.03895	-1532.22360	1.5
c	-1914.81653	0.30420	0.01167	-1915.33828	-4.1
d	-1678.47102	0.21765	0.04602	-1678.93245	10.9
TS ₂	-1678.44232	0.22449	0.03239	-1678.89956	27.3
e	-1678.45594	0.22698	0.03127	-1678.90654	23.8
TS ₃	-1678.45150	0.22700	0.02562	-1678.90061	24.0
f	-1678.56273	0.22499	0.03875	-1679.01089	
CO ₂	-188.58094	-0.00615	0.00274	-188.64827	
PhI	-335.26038	0.05432	-0.00035	-335.35663	
Phen	-571.61038	0.13629	-0.00857	-571.75997	

Table S1. Computed energy parameters of important TSs and intermediates.

Table S2. Cartesian coordinates (Å) of optimized geometries of the stationary points and transition states.

a

Number of imaginary frequencies : 0 Electronic energy= -2103.42282136 (hartree/particle)

Coordinates				
		•••••		
At No.	X	y	Z	
7	-2.550966000	-1.483784000	0.170135000	
1	-2.049163000	1.134931000	-0.459384000	
6	-2.779057000	-2.750190000	0.481432000	
6	-4.042044000	-3.237574000	0.872663000	
6	-5.101217000	-2.353098000	0.930303000	
6	-5.944448000	-0.018048000	0.629778000	
6	-5.698029000	1.279480000	0.296643000	
6	-4.097263000	3.048753000	-0.441714000	
6	-2.810071000	3.391230000	-0.802881000	
6	-1.808486000	2.402675000	-0.798774000	
6	-3.577606000	-0.606664000	0.227873000	
6	-4.894046000	-0.994961000	0.602305000	
6	-4.383688000	1.712378000	-0.085815000	
6	-3.313751000	0.778357000	-0.115002000	
1	-1.922538000	-3.418691000	0.417734000	
1	-4.168760000	-4.287459000	1.118417000	
1	-6.093779000	-2.686696000	1.223418000	
1	-6.942985000	-0.335732000	0.919140000	
1	-6.497867000	2.015478000	0.314883000	
1	-4.894053000	3.788491000	-0.429034000	
1	-2.554198000	4.406884000	-1.087171000	
1	-0.780193000	2.615474000	-1.076586000	
29	-0.422531000	-0.212767000	-0.396383000	
7	0.504645000	-2.023653000	-1.178199000	
7	0.895295000	-0.775727000	1.217642000	
6	0.329123000	-2.595331000	-2.362941000	
6	1.187366000	-3.585480000	-2.875627000	
6	2.264021000	-3.991117000	-2.111833000	
6	3.581082000	-3.760644000	0.001337000	
6	3.764939000	-3.151726000	1.205268000	
6	3.040340000	-1.450192000	2.887066000	
6	2.151527000	-0.456410000	3.244825000	
6	1.091667000	-0.149791000	2.372447000	
6	1.567113000	-2.401369000	-0.426336000	

6	2.482536000	-3.399549000	-0.848888000
6	2.869892000	-2.125535000	1.659382000
6	1.768738000	-1.746512000	0.849316000
1	-0.529498000	-2.255090000	-2.936048000
1	0.995384000	-4.013553000	-3.854434000
1	2.950073000	-4.753831000	-2.471715000
1	4.271412000	-4.527099000	-0.341393000
1	4.604203000	-3.423903000	1.840028000
1	3.876441000	-1.711724000	3.530756000
1	2.261139000	0.093177000	4.174103000
1	0.385361000	0.638203000	2.617338000
6	2.503428000	2.769567000	-0.855639000
6	2.364309000	3.101104000	0.642064000
9	3.805464000	2.986485000	-1.183219000
9	1.746918000	3.700204000	-1.519178000
6	2.051453000	1.306108000	-1.187551000
8	2.927151000	0.440386000	-1.138469000
8	0.804258000	1.222406000	-1.411319000
9	1.081061000	2.965257000	1.047446000
9	3.118443000	2.278875000	1.391383000
9	2.741041000	4.365718000	0.901837000

TS_1

. . .

Number of imaginary frequencies : 1 Electronic energy= -2103.36893469 (hartree/particle)

Coordinates				
At No.	х	у	Z	
7	1.453171000	-1.354017000	-1.181162000	
7	2.142489000	0.232808000	0.931434000	
6	1.104263000	-2.121656000	-2.202918000	
6	2.020522000	-2.910292000	-2.925614000	
6	3.351116000	-2.884155000	-2.557257000	
6	5.121639000	-1.982923000	-1.036911000	
6	5.467837000	-1.174804000	0.003722000	
6	4.805522000	0.459782000	1.775665000	
6	3.803200000	1.182308000	2.388658000	
6	2.477465000	1.041581000	1.933678000	
6	2.753389000	-1.320616000	-0.808353000	
6	3.758008000	-2.074439000	-1.473799000	
6	4.482568000	-0.396323000	0.699317000	
6	3.120389000	-0.470739000	0.306963000	

1	0.049662000	-2.111428000	-2.468189000
1	1.676190000	-3.518938000	-3.755935000
1	4.091461000	-3.474771000	-3.091327000
1	5.875017000	-2.567206000	-1.558944000
1	6.503610000	-1.102953000	0.325753000
1	5.839351000	0.543029000	2.101979000
1	4.015686000	1.858109000	3.210802000
1	1.663699000	1.603511000	2.377568000
29	0.127659000	0.035923000	0.162156000
7	-1.084230000	-1.321155000	1.394823000
7	-1.722852000	-0.290689000	-1.046137000
6	-0.764599000	-1.815286000	2.584614000
6	-1.604271000	-2.681088000	3.309295000
6	-2.824556000	-3.032493000	2.766174000
6	-4.458902000	-2.814752000	0.883765000
6	-4.792348000	-2.269733000	-0.319567000
6	-4.200122000	-0.787503000	-2.249087000
6	-3.282410000	0.057628000	-2.839876000
6	-2.048196000	0.281036000	-2.198237000
6	-2.278775000	-1.658882000	0.849076000
6	-3.199223000	-2.518088000	1.505417000
6	-3.890887000	-1.391442000	-1.009823000
6	-2.624978000	-1.097287000	-0.440423000
1	0.196210000	-1.506471000	2.988135000
1	-1.289835000	-3.051801000	4.279678000
1	-3.504537000	-3.693045000	3.298380000
1	-5.149144000	-3.475540000	1.401775000
1	-5.754135000	-2.488201000	-0.776621000
1	-5.161538000	-0.986186000	-2.716318000
1	-3.495830000	0.552228000	-3.782083000
1	-1.308666000	0.956430000	-2.614122000
6	0.004671000	2.524318000	-0.213092000
6	-0.835459000	3.707220000	-0.689674000
9	0.464542000	1.974952000	-1.457421000
9	1.138520000	3.104336000	0.340880000
6	-1.276613000	1.894285000	1.648831000
8	-2.380522000	1.740131000	1.232812000
8	-0.469917000	2.000895000	2.524582000
9	-0.163452000	4.559692000	-1.502728000
9	-1.914686000	3.276345000	-1.383870000
9	-1.280631000	4.434753000	0.356675000

.

Number of imaginary frequencies : 0 Electronic energy= -2103.40032434 (hartree/particle)

Coordinates				
At No.	х	v	Z	
7	1.383965000	-1.726549000	0.345311000	
7	2.051995000	0.793329000	1.250047000	
6	1.069160000	-2.951975000	-0.063945000	
6	2.019903000	-3.954848000	-0.317876000	
6	3.357503000	-3.653298000	-0.153829000	
6	5.104255000	-1.973363000	0.425978000	
6	5.435754000	-0.707403000	0.799314000	
6	4.733010000	1.596296000	1.441868000	
6	3.709640000	2.490380000	1.683543000	
6	2.381502000	2.036247000	1.577464000	
6	2.694840000	-1.419626000	0.527780000	
6	3.731062000	-2.360163000	0.270142000	
6	4.421858000	0.270731000	1.070261000	
6	3.046816000	-0.081304000	0.966913000	
1	0.009150000	-3.144323000	-0.209016000	
1	1.696623000	-4.938203000	-0.644873000	
1	4.128385000	-4.393639000	-0.353107000	
1	5.875800000	-2.711189000	0.220835000	
1	6.478007000	-0.413551000	0.895985000	
1	5.774429000	1.897703000	1.524980000	
1	3.910656000	3.521245000	1.958232000	
1	1.553788000	2.716336000	1.765288000	
29	-0.003781000	-0.047386000	-0.134140000	
7	-1.330757000	0.015647000	1.508706000	
7	-1.999167000	-1.107598000	-0.878541000	
6	-0.980414000	0.476324000	2.709469000	
6	-1.868731000	0.550441000	3.795202000	
6	-3.178317000	0.142557000	3.620291000	
6	-4.929957000	-0.778192000	2.091006000	
6	-5.290198000	-1.228165000	0.856325000	
6	-4.638936000	-1.803358000	-1.495467000	
6	-3.642487000	-1.881288000	-2.450743000	
6	-2.327400000	-1.523764000	-2.094975000	
6	-2.605483000	-0.431861000	1.337403000	
6	-3.582898000	-0.361734000	2.366226000	
6	-4.324853000	-1.335586000	-0.200569000	
6	-2.974223000	-0.973228000	0.047974000	
1	0.051650000	0.799015000	2.799793000	

.....

1	-1.521552000	0.939844000	4.747002000
1	-3.899040000	0.206022000	4.431695000
1	-5.664031000	-0.710114000	2.889792000
1	-6.317306000	-1.521335000	0.653979000
1	-5.661494000	-2.090584000	-1.728099000
1	-3.855173000	-2.223927000	-3.458632000
1	-1.511519000	-1.564466000	-2.810867000
6	0.721727000	0.597138000	-1.875265000
6	0.106971000	1.785250000	-2.602788000
9	0.596033000	-0.458217000	-2.820005000
9	2.094440000	0.873522000	-1.861975000
6	-1.631571000	3.229852000	0.354415000
8	-2.547655000	2.887425000	-0.284081000
8	-0.746507000	3.598784000	1.026599000
9	0.681465000	2.070317000	-3.793236000
9	-1.208058000	1.575977000	-2.838566000
9	0.205135000	2.911236000	-1.844936000

a'

Number of imaginary frequencies : 0

Electronic energy= -1531.80809718 (hartree/particle)

Coordinates

.....

At No.	х	у	Ζ	
7	1.312716000	1.079069000	0.129510000	
7	2.155896000	-1.487958000	0.006869000	
6	0.853497000	2.322588000	0.196036000	
6	1.714177000	3.439947000	0.139914000	
6	3.074936000	3.240296000	0.012640000	
6	4.979671000	1.609850000	-0.189154000	
6	5.408189000	0.316523000	-0.250504000	
6	4.870722000	-2.133312000	-0.245342000	
6	3.909948000	-3.123330000	-0.176976000	
6	2.557809000	-2.755507000	-0.050600000	
6	2.642053000	0.867595000	0.005732000	
6	3.584437000	1.922259000	-0.058779000	
6	4.479055000	-0.777105000	-0.187146000	
6	3.093968000	-0.504307000	-0.059528000	
1	-0.225837000	2.411195000	0.296726000	
1	1.297248000	4.440213000	0.197499000	
1	3.761089000	4.082330000	-0.032875000	
1	5.693215000	2.428150000	-0.237959000	
1	6.466409000	0.090244000	-0.348860000	

1	5.923839000	-2.383768000	-0.343382000
1	4.177641000	-4.173871000	-0.218891000
1	1.779136000	-3.509997000	0.005405000
6	-3.914301000	-0.332618000	0.530665000
6	-4.693467000	0.190814000	-0.694073000
9	-4.183072000	-1.659547000	0.629817000
9	-4.429900000	0.283848000	1.632785000
29	0.216871000	-0.799137000	0.190824000
6	-2.389380000	-0.043946000	0.437284000
8	-1.662930000	-1.091892000	0.343521000
8	-2.060584000	1.144001000	0.457325000
9	-5.966328000	-0.241966000	-0.664912000
9	-4.707893000	1.527995000	-0.735183000
9	-4.121922000	-0.266179000	-1.826285000

..... TS₁'

Number of imaginary frequencies : 1

Electronic energy= -1531.74534814 (hartree/particle)

.....

.....

Coordinates

At No.	X	У	Z
7	1.212206000	-1.360956000	-0.035848000
7	0.892296000	1.336739000	-0.245428000
6	1.335398000	-2.679558000	0.062031000
6	2.583092000	-3.306927000	0.249009000
6	3.720237000	-2.527988000	0.335900000
6	4.742064000	-0.235456000	0.313745000
6	4.583265000	1.114604000	0.210558000
6	3.066576000	3.088160000	-0.091385000
6	1.783410000	3.566387000	-0.269812000
6	0.716629000	2.650821000	-0.340469000
6	2.318863000	-0.582020000	0.045274000
6	3.615075000	-1.121427000	0.234422000
6	3.284221000	1.695986000	0.018969000
6	2.149237000	0.851537000	-0.065320000
1	0.413055000	-3.249990000	-0.011556000
1	2.633830000	-4.388171000	0.322857000
1	4.697109000	-2.981869000	0.481654000
1	5.729759000	-0.664540000	0.459119000
1	5.442295000	1.777082000	0.272575000
1	3.912247000	3.768408000	-0.032502000
1	1.584092000	4.629414000	-0.354787000
1	-0.306602000	2.987787000	-0.472748000

6	-2.622423000	-0.350041000	0.633862000
6	-3.406216000	0.882695000	0.183272000
9	-3.531000000	-1.205746000	1.177932000
9	-1.843556000	0.098149000	1.727228000
29	-0.523218000	-0.178311000	-0.309797000
6	-2.040042000	-1.640915000	-0.967676000
8	-1.909367000	-0.966681000	-1.979023000
8	-2.090173000	-2.749947000	-0.511921000
9	-4.064643000	1.490300000	1.190610000
9	-2.555662000	1.808720000	-0.345002000
9	-4.298915000	0.559720000	-0.761689000

b'

Number of imaginary frequencies : 0

Electronic energy= -1531.79050834 (hartree/particle)

~ ...

Coordinates

.....

At No.	х	у	Z
7	1.098681000	1.393079000	0.020952000
7	1.248045000	-1.306049000	-0.092342000
6	1.004549000	2.720087000	0.066101000
6	2.133897000	3.559535000	0.110425000
6	3.393390000	2.993085000	0.108694000
6	4.793560000	0.912298000	0.053449000
6	4.867999000	-0.448350000	0.003510000
6	3.690736000	-2.665733000	-0.103232000
6	2.495083000	-3.355433000	-0.153154000
6	1.285612000	-2.629741000	-0.147043000
6	2.332585000	0.823367000	0.014192000
6	3.525391000	1.586975000	0.059382000
6	3.679759000	-1.252755000	-0.046949000
6	2.411593000	-0.619787000	-0.042681000
1	-0.001641000	3.127088000	0.066111000
1	1.999503000	4.635514000	0.146187000
1	4.284941000	3.613972000	0.144113000
1	5.698565000	1.512745000	0.090116000
1	5.833695000	-0.946896000	0.000181000
1	4.640551000	-3.194563000	-0.107352000
1	2.472628000	-4.439500000	-0.197759000
1	0.323097000	-3.131953000	-0.189983000
6	-2.398359000	-0.373147000	0.020634000
6	-2.673501000	-1.870730000	0.127516000
9	-3.130341000	0.188621000	1.079333000

9	-3.093747000	0.028443000	-1.130992000
29	-0.516906000	0.127510000	-0.006405000
6	-3.641470000	2.713309000	-0.159255000
8	-4.782144000	2.470978000	-0.181775000
8	-2.510633000	3.021392000	-0.141690000
9	-3.976650000	-2.206986000	0.105988000
9	-2.071364000	-2.531736000	-0.898703000
9	-2.144662000	-2.365035000	1.272378000
c			
Number	of imaginary frequ	iencies : 0	
Electron	ic energy= -1914	.81652937 (hartree/j	particle)
			••••••
		Coordinate	es
At No.	Х	у	Z
7	-1.110841000	-1.420158000	0.929564000
7	-1.959293000	-0.283072000	-1.434807000
6	-0.705824000	-2.017201000	2.047319000
6	-1.579826000	-2.622160000	2.965648000
6	-2.937269000	-2.580606000	2.711880000
6	-4.803446000	-1.842869000	1.233765000
6	-5.226143000	-1.198376000	0.112174000
6	-4.691086000	0.049456000	-1.979499000
6	-3.733734000	0.568676000	-2.828168000
6	-2.377548000	0.370447000	-2.510523000
6	-2.440937000	-1.395308000	0.652593000
6	-3.405216000	-1.951339000	1.539051000
6	-4.285946000	-0.633245000	-0.812772000
6	-2.889119000	-0.754702000	-0.569984000
1	0.366057000	-2.002600000	2.227756000
1	-1.184521000	-3.098630000	3.857384000
1	-3.651463000	-3.019633000	3.404142000
1	-5.519604000	-2.271904000	1.930065000
1	-6.287286000	-1.100226000	-0.103089000
1	-5.751366000	0.163642000	-2.191603000
1	-4.008040000	1.110743000	-3.727817000
1	-1.601145000	0.760553000	-3.165377000
29	0.132857000	0.175694000	0.026640000
7	1.488637000	-0.805359000	-1.270656000
7	2.171528000	0.029699000	1.226305000
6	1.141507000	-1.292984000	-2.460379000
6	2.063063000	-1.845816000	-3.365332000

6	3.402190000	-1.880390000	-3.022099000
6	5.177538000	-1.355056000	-1.340375000
6	5.530102000	-0.836263000	-0.130726000
6	4.846249000	0.214692000	2.039142000
6	3.824642000	0.676906000	2.847958000
6	2.494860000	0.561131000	2.399204000
6	2.797226000	-0.872706000	-0.903871000
6	3.805589000	-1.382590000	-1.765137000
6	4.536797000	-0.330162000	0.773723000
6	3.166088000	-0.377922000	0.403932000
1	0.083117000	-1.235691000	-2.695472000
1	1.716417000	-2.224073000	-4.321891000
1	4.146556000	-2.282313000	-3.704894000
1	5.934897000	-1.744395000	-2.016000000
1	6.573646000	-0.802272000	0.172181000
1	5.883687000	0.270524000	2.359789000
1	4.030375000	1.113545000	3.820346000
1	1.663250000	0.918747000	2.998856000
6	-0.607709000	1.911279000	0.667412000
6	-0.374238000	3.168002000	-0.160485000
9	-0.103945000	2.250132000	1.942865000
9	-2.000545000	1.875023000	0.849267000
9	-0.895715000	4.296974000	0.374920000
9	0.949999000	3.389536000	-0.331717000
9	-0.921407000	3.032308000	-1.394944000

.....

d

Number of imaginary frequencies : 0 Electronic energy= -1678.47101688 (hartree/particle)

Coordinates				
At No.	х	у	Z	
7	-3.889155000	0.186265000	-0.098349000	
7	-1.552223000	1.554643000	-0.062365000	
6	-5.015557000	-0.512424000	-0.114885000	
6	-6.287563000	0.094798000	-0.061210000	
6	-6.370544000	1.471401000	0.009189000	
6	-5.169863000	3.675455000	0.096547000	
6	-3.994042000	4.365424000	0.110059000	
6	-1.487845000	4.351473000	0.069294000	
6	-0.319295000	3.617753000	0.017033000	
6	-0.396074000	2.214108000	-0.047710000	

6	-3.957467000	1.534596000	-0.028577000
6	-5.184778000	2.241637000	0.026791000
6	-2.731995000	3.681875000	0.056719000
6	-2.709938000	2.266134000	-0.011855000
1	-4.904746000	-1.591162000	-0.174545000
1	-7.179907000	-0.522569000	-0.076687000
1	-7.334870000	1.971434000	0.051044000
1	-6.118661000	4.203806000	0.138199000
1	-3.991909000	5.450786000	0.162281000
1	-1.463935000	5.436968000	0.120462000
1	0.651949000	4.101086000	0.025532000
1	0.502408000	1.605630000	-0.086495000
6	4.439549000	-0.126427000	0.079955000
6	5.030712000	0.056297000	-1.173879000
6	5.052650000	0.379116000	1.230376000
6	6.233558000	0.749989000	-1.279237000
1	4.558296000	-0.340204000	-2.066132000
6	6.255389000	1.073313000	1.127793000
1	4.597913000	0.232639000	2.204191000
6	6.853161000	1.265545000	-0.128767000
1	6.696369000	0.894468000	-2.250301000
1	6.735271000	1.467578000	2.017918000
29	-1.708427000	-0.490784000	-0.148837000
53	2.591998000	-1.175855000	0.235843000
6	-1.124058000	-2.349699000	-0.237186000
9	-0.076549000	-2.675893000	0.649954000
6	-2.201338000	-3.382863000	0.088763000
9	-0.651480000	-2.727006000	-1.493910000
9	-2.676921000	-3.196817000	1.341015000
9	-3.258031000	-3.239035000	-0.760229000
9	-1.793423000	-4.661803000	-0.005280000
6	8.087332000	1.986863000	-0.236356000
7	9.086522000	2.576434000	-0.323568000

TS_2

Number of imaginary frequencies : 1

Electronic energy= -1678.44232142 (hartree/particle)

	Coordinates				
At No.	х	у	Z		
7	-0.982138000	1.760967000	0.372216000		
7	-2.004436000	-0.769874000	0.399465000		
6	-0.477705000	2.985348000	0.288871000		

.....

6	-1.271801000	4.142015000	0.176758000
6	-2.645294000	4.006056000	0.154780000
6	-4.633470000	2.488721000	0.198312000
6	-5.142543000	1.226617000	0.254745000
6	-4.758095000	-1.242982000	0.370723000
6	-3.861419000	-2.291667000	0.428072000
6	-2.484547000	-2.007330000	0.433948000
6	-2.328687000	1.612545000	0.320050000
6	-3.216449000	2.716501000	0.224287000
6	-4.277086000	0.084025000	0.329311000
6	-2.870700000	0.271833000	0.354555000
1	0.606145000	3.058587000	0.310962000
1	-0.798622000	5.116441000	0.113248000
1	-3.292906000	4.875696000	0.078451000
1	-5.294661000	3.348467000	0.130543000
1	-6.216498000	1.062253000	0.234589000
1	-5.829694000	-1.424156000	0.353948000
1	-4.197961000	-3.322604000	0.459543000
1	-1.749341000	-2.805475000	0.463989000
6	2.089599000	-0.076734000	0.604890000
6	2.291718000	1.147220000	1.264505000
6	3.029846000	-0.550651000	-0.322715000
6	3.379834000	1.943856000	0.916748000
1	1.611821000	1.469962000	2.044871000
6	4.115621000	0.245295000	-0.658233000
1	2.887147000	-1.506625000	-0.808943000
6	4.300404000	1.501901000	-0.047757000
1	3.534946000	2.897445000	1.412675000
1	4.826125000	-0.098399000	-1.403365000
29	0.055630000	-0.270683000	0.077975000
53	1.141997000	-1.720456000	2.119755000
6	0.177032000	-0.326828000	-1.955193000
9	1.262520000	0.324531000	-2.512205000
6	0.143521000	-1.700092000	-2.621448000
9	-0.953428000	0.330216000	-2.445696000
9	1.222465000	-2.435478000	-2.255942000
9	-0.956723000	-2.387783000	-2.233149000
9	0.131849000	-1.652324000	-3.967676000
6	5.427487000	2.315010000	-0.388479000
7	6.342378000	2.981187000	-0.661277000

.. е

Number of imaginary frequencies : 0

Electronic energy= -1678.45594074 (hartree/particle)

.....

Coordinates

At No.	х	у	Z	
7	0.743714000	1.500344000	-0.307916000	
7	1.677883000	-0.605632000	1.134463000	
6	0.274819000	2.511093000	-1.032098000	
6	0.954365000	3.734171000	-1.152228000	
6	2.159980000	3.898626000	-0.498509000	
6	3.933133000	2.923095000	0.975367000	
6	4.407781000	1.866900000	1.693485000	
6	4.125476000	-0.492674000	2.489465000	
6	3.357936000	-1.640186000	2.504497000	
6	2.134640000	-1.653626000	1.808187000	
6	1.926989000	1.641745000	0.342717000	
6	2.683128000	2.839792000	0.274477000	
6	3.671695000	0.637262000	1.773649000	
6	2.426208000	0.524015000	1.105019000	
1	-0.669355000	2.342187000	-1.538353000	
1	0.526629000	4.525288000	-1.758471000	
1	2.713786000	4.830530000	-0.575034000	
1	4.498534000	3.848782000	0.914209000	
1	5.358502000	1.936678000	2.214875000	
1	5.075703000	-0.448265000	3.015210000	
1	3.680428000	-2.527779000	3.038626000	
1	1.512777000	-2.541004000	1.792662000	
6	-1.064524000	-2.098367000	0.055948000	
9	-1.931138000	-2.418932000	-0.920049000	
9	-0.010353000	-2.965321000	0.008690000	
6	-1.744801000	-2.382906000	1.417483000	
29	-0.119487000	-0.367961000	-0.224197000	
53	1.029848000	-1.005554000	-2.634589000	
6	-1.886319000	0.373582000	0.199826000	
6	-2.128597000	1.031725000	1.404500000	
6	-2.769674000	0.468816000	-0.872527000	
6	-3.263142000	1.833109000	1.527393000	
6	-3.904700000	1.274988000	-0.754300000	
6	-4.152911000	1.961941000	0.445676000	
1	-1.451313000	0.929732000	2.246979000	
1	-2.584874000	-0.075658000	-1.794380000	
1	-3.465078000	2.361235000	2.454484000	
1	-4.601631000	1.366449000	-1.581829000	
9	-2.993189000	-1.910976000	1.463627000	
9	-1.794948000	-3.706966000	1.639862000	

9	-1.032744000	-1.825923000	2.421676000
6	-5.314257000	2.794081000	0.571297000
7	-6.252018000	3.474866000	0.674273000

TS₃

6

6

6

3.804571000

4.323261000

4.723060000

Number of imaginary frequencies : 1

Electronic energy= -1678.45149746 (hartree/particle)

..... Coordinates At No. х У Ζ 7 -1.011058000 -0.014700000 1.572120000 -1.043086000 7 -1.797185000 0.072053000 6 -0.621359000 -0.1320740002.834196000 6 -1.518708000 -0.244981000 3.912821000 6 -2.873841000-0.2408620003.652059000 6 -4.714085000 -0.168656000 1.960856000 6 -5.103331000 -0.1158950000.656861000 6 -4.494964000 -0.016951000 -1.765531000 6 -3.507194000 0.037481000 -2.727968000 6 -2.163046000 0.077625000 -2.320088000 6 -2.338750000 -0.038388000 1.300631000 6 -3.324162000 -0.1456010002.316908000 6 -4.135999000 -0.037578000 -0.400320000 6 -2.753733000 0.009840000 -0.083604000 1 0.450781000 -0.146803000 3.007090000 1 -1.137104000 -0.3344580004.924555000 1 -3.599188000 -0.322676000 4.457386000 1 -5.451565000 -0.2404550002.755632000 1 -6.156862000 -0.143857000 0.392575000 1 -0.052792000 -5.545076000 -2.043422000 1 -3.746885000 0.045202000 -3.785873000 1 -1.361519000 0.110017000 -3.049269000 1.878127000 6 0.953877000 -1.073984000 9 2.163095000 2.441826000 -1.312256000 9 0.371027000 1.727215000 -2.30496800029 0.195968000 -0.048594000 -0.397820000 53 0.280371000 -2.702599000-0.780058000 6 2.101110000 0.267931000 -0.106019000 6 2.497392000 0.653967000 1.175169000 6 3.020622000 -0.269947000-1.013343000

1.593957000

-0.597790000

0.712930000

0.402773000

-0.513022000

-0.186060000

1	1.809484000	1.153981000	1.845240000	
1	2.716217000	-0.539882000	-2.017894000	
1	4.118526000	0.677794000	2.596077000	
1	5.035734000	-0.966151000	-1.279631000	
6	6.069249000	-0.429847000	1.138500000	
7	7.162897000	-0.622408000	1.486253000	
6	0.169866000	2.964780000	-0.299257000	
9	-1.121042000	2.643914000	-0.129824000	
9	0.719632000	3.154087000	0.912790000	
9	0.218300000	4.127007000	-0.969248000	
f				
Number	of imaginary frequ	iencies : 0		
Electron	nic energy= -1678	.56272726 (hartree/j	particle)	
		•••••••••••••••••••••••••••••••••••••••	·	
		Coordinate	es	
At No.	x	у	Z	
7	2.293909000	0.637002000	1.264984000	
7	2.108272000	0.541514000	-1.436493000	
6	2.367737000	0.702014000	2.588902000	
6	3.317798000	-0.021853000	3.335043000	
6	4.214020000	-0.835007000	2.669059000	
6	5.050312000	-1.741884000	0.483983000	
6	4.955430000	-1.791387000	-0.875039000	
6	3.822824000	-1.036936000	-2.982997000	
6	2.842311000	-0.265473000	-3.576075000	
6	2.000984000	0.514625000	-2.760074000	
6	3.167811000	-0.157801000	0.599818000	
6	4.160504000	-0.923924000	1.259638000	
6	3.963174000	-1.026424000	-1.576768000	
6	3.067769000	-0.209661000	-0.842308000	
1	1.646929000	1.351664000	3.077415000	
1	3.333576000	0.067424000	4.416282000	
1	4.960285000	-1.407120000	3.214262000	
1	5.805374000	-2.324482000	1.004887000	
1	5.633921000	-2.413289000	-1.452699000	
1	4.489002000	-1.650972000	-3.583571000	
1	2.711281000	-0.250715000	-4.653068000	
1	1.220582000	1.137516000	-3.188256000	
6	-1.263301000	-2.037503000	-0.442167000	
9	-1.118138000	-3.276683000	-0.997866000	
9	-0.581790000	-1.149162000	-1.226366000	
29	0.907852000	1.600607000	-0.043941000	

53	-0.983160000	3.249365000	0.038662000
6	-2.717812000	-1.661726000	-0.328854000
6	-3.681584000	-2.669204000	-0.203394000
6	-3.091760000	-0.313899000	-0.320040000
6	-5.024813000	-2.332113000	-0.082221000
6	-4.435842000	0.027459000	-0.196639000
6	-5.407530000	-0.979423000	-0.079649000
1	-3.381493000	-3.711212000	-0.209014000
1	-2.349869000	0.474215000	-0.405015000
1	-5.780369000	-3.105350000	0.008481000
1	-4.728987000	1.071913000	-0.189636000
6	-6.795083000	-0.634208000	0.042962000
7	-7.921917000	-0.363886000	0.142005000
6	-0.516405000	-2.088090000	0.911061000
9	-0.560744000	-0.892612000	1.518852000
9	-1.081055000	-3.001606000	1.715832000
9	0.772666000	-2.422320000	0.728013000

.....

$\rm CO_2$

Number of imaginary frequencies : 0 Electronic energy= -188.580935190 (hartree/particle)

	Coordinates				
At No.	Х	у	Z		
6	0.000112000	-0.000171000	-0.000121000		
8	0.947518000	0.148234000	-0.667088000		
8	-0.947602000	-0.148106000	0.667179000		

PhI

Number of imaginary frequencies : 0

Electronic energy= -335.260375592 (hartree/particle)

Coordinates

At No.	Х	У	Ζ
6	0.048331000	-0.000022000	-0.000235000
6	-0.638028000	-1.215873000	-0.000303000
6	-0.637917000	1.215882000	-0.000273000
6	-2.030880000	-1.214618000	-0.000190000
1	-0.099093000	-2.156651000	-0.000418000
6	-2.030762000	1.214779000	-0.000171000

1	-0.098904000	2.156615000	-0.000498000	
6	-2.735740000	0.000126000	-0.000176000	
1	-2.575171000	-2.153444000	-0.000127000	
1	-2.574925000	2.153681000	-0.000212000	
53	2.185740000	-0.000022000	0.000096000	
6	-4.169534000	0.000148000	0.000153000	
7	-5.332706000	-0.000223000	0.000474000	

Phen

Number of imaginary frequencies : 0

Electronic energy= -571.610381147 (hartree/particle)

Coordinates					
At No.	X	у	Z		
7	1.380909000	-1.563576000	-0.000096000		
7	-1.380902000	-1.563580000	0.000068000		
6	2.703606000	-1.548740000	0.000003000		
6	3.482224000	-0.372873000	0.000055000		
6	2.829090000	0.841425000	0.000088000		
6	0.680411000	2.101705000	0.000026000		
6	-0.680408000	2.101699000	-0.000032000		
6	-2.829082000	0.841435000	-0.000037000		
6	-3.482221000	-0.372880000	0.000029000		
6	-2.703618000	-1.548732000	0.000115000		
6	0.729341000	-0.377888000	-0.000160000		
6	1.416909000	0.870694000	0.000011000		
6	-1.416915000	0.870696000	-0.000052000		
6	-0.729345000	-0.377906000	-0.000104000		
1	3.193542000	-2.522174000	-0.000118000		
1	4.566477000	-0.433817000	0.000107000		
1	3.382610000	1.777750000	0.000192000		
1	1.234578000	3.037377000	0.000146000		
1	-1.234580000	3.037370000	0.000004000		
1	-3.382620000	1.777748000	-0.000039000		
1	-4.566475000	-0.433808000	0.000035000		
1	-3.193534000	-2.522176000	0.000219000		

References:

- 1. X. Lu, J. Yi, Z.-Q. Zhang, J.-J. Dai, J.-H. Liu, B. Xiao, Y. Fu and L. Liu, *Chem.-Eur. J.*, 2014, **20**, 15339-15343.
- 2. H. Serizawa, K. Aikawa and K. Mikami, Org. Lett., 2014, 16, 3456-3459.
- E. Emer, J. Twilton, M. Tredwell, S. Calderwood, T. L. Collier, B. Liégault, M. Taillefer and V. Gouverneur, *Org. Lett.*, 2014, 16, 6004-6007.
- 4. A. Lishchynskyi and V. V. Grushin, J. Am. Chem. Soc., 2013, 135, 12584-12587.
- 5. Y. Nakamura and K. Uneyama, J. Org. Chem., 2007, 72, 5894-5897.
- 6. M. G. Mormino, P. S. Fier and J. F. Hartwig, Org. Lett., 2014, 16, 1744-1747.
- 7. H. Morimoto, T. Tsubogo, N. D. Litvinas and J. F. Hartwig, *Angew. Chem. Int. Ed.*, 2011, **50**, 3793-3798.
- 8. D.-F. Jiang, C. Liu, Y. Guo, J.-C. Xiao and Q.-Y. Chen, *Eur. J. Org. Chem.*, 2014, **2014**, 6303-6309.
- 9. M. Yoshida, H. Amemiya, M. Kobayashi, H. Sawada, H. Hagii and K. Aoshima, J. Chem. Soc. Chem. Commun., 1985, 234-236.
- 10. F. Zhao, X. Yang and J. Liu, *Tetrahedron*, 2004, **60**, 9945-9951.
- 11. B. Lantaño, S. Barata-Vallejo, M. R. Torviso, S. M. Bonesi, J. E. Argüello and A. Postigo, *J. Fluorine Chem.*, 2014, **161**, 149-155.
- 12. H. Uno, S.-i. Okada and H. Suzuki, *Tetrahedron*, 1991, 47, 6231-6242.
- 13. S. El Kharrat, P. Laurent and H. Blancou, *Tetrahedron*, 2014, 70, 1252-1266.
- 14. SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.

Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

¹⁹F NMR spectrum of 1a in DMSO- d_6

¹H NMR spectrum of 1a in DMSO- d_6

¹³C NMR spectrum of 1a in DMSO- d_6

¹⁹F NMR spectrum of 1b in DMSO- d_6

¹H NMR spectrum of 1b in DMSO-*d*₆

¹³C NMR spectrum of 1b in DMSO- d_6

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

¹⁹F NMR spectrum of 1c in DMSO- d_6

¹H NMR spectrum of 1c in DMSO-*d*₆

9.02 9.02 7.799 9.01 7.999 9.01 7.999

¹³C NMR spectrum of 1c in DMSO- d_6

¹⁹F NMR spectrum of 1d in DMSO-*d*₆

¹**H NMR** spectrum of **1d** in DMSO- d_6

¹³C NMR spectrum of 1d in DMSO- d_6

339 18 96	$\begin{array}{c} 0.08\\$
53.	0.0000.0000000000000000000000000000000
-	
T.	ררר נו

¹⁹F NMR spectrum of **3a** in CDCl₃

¹H NMR spectrum of **3a** in CDCl₃

¹³C NMR spectrum of **3a** in CDCl₃

¹⁹F NMR spectrum of **3b** in CDCl₃

¹H NMR spectrum of **3b** in CDCl₃

¹³C NMR spectrum of **3b** in CDCl₃

¹⁹F NMR spectrum of **3c** in CDCl₃

¹H NMR spectrum of **3c** in CDCl₃

7. 74 7. 72 7. 64 7. 65 7. 65 7. 65 7. 65 7. 65 7. 49 7. 48 7. 48 F₂CF₃ 7.8 7.6 7.4 fl (ppm) 8.0 7.2 1.00 -1 f1 (ppm)

¹³C NMR spectrum of **3c** in CDCl₃

¹⁹F NMR spectrum of **3d** in CDCl₃

¹H NMR spectrum of **3d** in CDCl₃

7, 67 7, 55

¹³C NMR spectrum of **3d** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **3e** in CDCl₃

¹H NMR spectrum of **3e** in CDCl₃

¹³C NMR spectrum of **3e** in CDCl₃

¹⁹F NMR spectrum of **3f** in CDCl₃

¹H NMR spectrum of **3f** in CDCl₃

¹³C NMR spectrum of **3f** in CDCl₃

$\frac{34}{25}$	$\begin{smallmatrix} 0.0 \\ 0.$
45. 45. 43. 43.	25.125. 25.
SV/	

¹⁹F NMR spectrum of **3g** in CDCl₃

¹H NMR spectrum of **3g** in CDCl₃

L7. 84 7. 75 7. 75 7. 73

¹³C NMR spectrum of **3g** in CDCl₃

¹⁹F NMR spectrum of **3h** in CDCl₃

¹H NMR spectrum of **3h** in CDCl₃

^{13}C NMR spectrum of **3h** in CDCl₃

66	$\begin{array}{c} 88\\ 88\\ 79\\ 88\\ 88\\ 88\\ 88\\ 88\\ 88\\ 88\\ 88\\ 88\\ 8$	œ
-196.	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	-26. 7

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **3i** in CDCl₃

¹H NMR spectrum of **3i** in CDCl₃

¹³C NMR spectrum of **3i** in CDCl₃

¹⁹F NMR spectrum of **3j** in CDCl₃

¹H NMR spectrum of **3j** in CDCl₃

¹³C NMR spectrum of **3j** in CDCl₃

¹⁹F NMR spectrum of 3k in CDCl₃

¹H NMR spectrum of **3**k in CDCl₃

¹³C NMR spectrum of 3k in CDCl₃

¹⁹F NMR spectrum of **3l** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

¹H NMR spectrum of **3**l in CDCl₃

^{13}C NMR spectrum of **31** in CDCl₃

	$ \underbrace{ \begin{smallmatrix} 158. & 34 \\ 158. & 32 \\ 158. & 29 \end{smallmatrix} }_{ 158. & 29 }$	$\begin{bmatrix} 133. \ 48\\ 133. \ 46\\ 133. \ 45\\ 123. \ 91\\ 128. \ 82\\ 128. \ 82\\ 128. \ 82\\ 128. \ 82\\ 128. \ 74$ 128. \ 74\\ 128. \ 74 128. \	121.27 120.88 120.49 120.32 118.42	-117. 64 -116. 99 -116. 77 -116. 54 -116. 50 -116. 11	-113.57 -113.57 -112.45 -111.43 -111.43				
CF ₂ CF ₃ OMe									
		i		1					
	i.								
			i ii.i	l	antaga mantan ing manana mata ang manana na	nyan kanya nyi ayi dan kanya makana marada	<u> </u>		
210 200 190 180 170	160 1	50 140 130	120 110 100	90 80	70 60	50 40	30 20	10 0	-10

f1 (ppm)

¹⁹F NMR spectrum of **3m** in CDCl₃

¹H NMR spectrum of 3m in CDCl₃

¹³C NMR spectrum of **3m** in CDCl₃

¹⁹F NMR spectrum of **3n** (unlocked)

¹⁹F NMR spectrum of **30** in CDCl₃

¹H NMR spectrum of **30** in CDCl₃

¹³C NMR spectrum of **30** in CDCl₃

¹⁹F NMR spectrum of **3p** in CDCl₃

¹H NMR spectrum of **3p** in CDCl₃

 ^{13}C NMR spectrum of 3p in CDCl_3

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **3q** in CDCl₃

¹H NMR spectrum of 3q in CDCl₃

^{13}C NMR spectrum of 3q in CDCl_3

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **3r** in CDCl₃

¹H NMR spectrum of **3r** in CDCl₃

¹³C NMR spectrum of 3r in CDCl₃

55	67 41 15 30	$\begin{smallmatrix} 228\\ 288\\ 288\\ 288\\ 288\\ 288\\ 288\\ 288$
57.	30.30	222 222 222 222 222 222 222 222 222 22
Y	Y	

¹⁹F NMR spectrum of **3s** in CDCl₃

¹H NMR spectrum of **3s** in CDCl₃

 ^{13}C NMR spectrum of 3s in CDCl_3

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **3t** in CDCl₃

¹H NMR spectrum of **3t** in CDCl₃

¹³C NMR spectrum of **3t** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **3u** in CDCl₃

¹H NMR spectrum of **3u** in CDCl₃

¹³C NMR spectrum of **3u** in CDCl₃

¹⁹F NMR spectrum of **3v** in CDCl₃

¹H NMR spectrum of 3v in CDCl₃

¹³C NMR spectrum of 3v in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of 4a in CDCl₃

¹H NMR spectrum of 4a in CDCl₃

¹³C NMR spectrum of 4a in CDCl₃

¹⁹F NMR spectrum of 4b in CDCl₃

¹H NMR spectrum of 4b in CDCl₃

¹³C NMR spectrum of 4b in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of 4c in CDCl₃

¹H NMR spectrum of 4c in CDCl₃

¹³C NMR spectrum of 4c in CDCl₃

¹⁹F NMR spectrum of 4e in CDCl₃

¹H NMR spectrum of 4e in CDCl₃

¹³C NMR spectrum of 4e in CDCl₃

$\begin{array}{c} 11\\ 11\\ 222222222222222222222222222222$	99 64
22222222222222222222222222222222222222	06.
	17

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of 4f in CDCl₃

¹H NMR spectrum of 4f in CDCl₃

¹³C NMR spectrum of 4f in CDCl₃

¹⁹F NMR spectrum of 4g in CDCl₃

¹H NMR spectrum of 4g in CDCl₃

¹³C NMR spectrum of 4g in CDCl₃

¹⁹F NMR spectrum of 4h in CDCl₃

¹H NMR spectrum of 4h in CDCl₃

¹³C NMR spectrum of 4h in CDCl₃

¹⁹F NMR spectrum of 4i in CDCl₃

¹H NMR spectrum of 4i in CDCl₃

¹³C NMR spectrum of 4i in CDCl₃

¹⁹F NMR spectrum of 4k in CDCl₃

¹H NMR spectrum of 4k in CDCl₃

¹³C NMR spectrum of 4k in CDCl₃

¹⁹F NMR spectrum of 4l in CDCl₃

¹H NMR spectrum of 4l in CDCl₃

¹³C NMR spectrum of 4l in CDCl₃

111

¹⁹F NMR spectrum of 4m in CDCl₃

¹H NMR spectrum of 4m in CDCl₃

¹³C NMR spectrum of 4m in CDCl₃

¹⁹F NMR spectrum of 40 in CDCl₃

¹H NMR spectrum of 40 in CDCl₃

¹³C NMR spectrum of 40 in CDCl₃

¹⁹F NMR spectrum of 4p in CDCl₃

¹H NMR spectrum of 4p in CDCl₃

¹³C NMR spectrum of 4p in CDCl₃

¹⁹F NMR spectrum of 4s in CDCl₃

¹H NMR spectrum of 4s in CDCl₃

¹³C NMR spectrum of 4s in CDCl₃

¹⁹F NMR spectrum of 4t in CDCl₃

¹H NMR spectrum of 4t in CDCl₃

¹³C NMR spectrum of 4t in CDCl₃

¹⁹F NMR spectrum of 4v in CDCl₃

01 10 00	82228	20
000	0000	.90
$\omega \omega \omega \omega$	7777	T
Y	Y	1

¹H NMR spectrum of 4v in CDCl₃

¹³C NMR spectrum of 4v in CDCl₃

¹⁹F NMR spectrum of 5a in CDCl₃

¹H NMR spectrum of **5a** in CDCl₃

¹³C NMR spectrum of **5a** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **5b** in CDCl₃

¹H NMR spectrum of **5b** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of 5c in CDCl₃

¹H NMR spectrum of **5c** in CDCl₃

 $\begin{array}{c} -2.5 \\ -2$

¹³C NMR spectrum of **5c** in CDCl₃

¹⁹F NMR spectrum of 5e in CDCl₃

¹H NMR spectrum of **5e** in CDCl₃

¹³C NMR spectrum of **5e** in CDCl₃

1111 1112 1112 1112 1112 1112 1112 111	01 01 669 67 97 37 37
	000011101010

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of 5f in CDCl₃

¹H NMR spectrum of **5f** in CDCl₃

¹³C NMR spectrum of **5f** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **5g** in CDCl₃

¹H NMR spectrum of **5g** in CDCl₃

 ^{13}C NMR spectrum of 5g in CDCl_3

141 17 17 17 17 17 17 17 17 17 17 17 17 17	97 97 97 97 97 97 97 97 97 97
227. 277. 277. 277.	0.0100000000000000000000000000000000000

^{19}F NMR spectrum of 5h in CDCl_3

¹H NMR spectrum of **5h** in CDCl₃

¹³C NMR spectrum of **5h** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of 5i in CDCl₃

¹H NMR spectrum of **5i** in CDCl₃

¹³C NMR spectrum of 5i in CDCl₃

^{19}F NMR spectrum of 5k in CDCl_3

¹H NMR spectrum of 5k in CDCl₃

¹³C NMR spectrum of 5k in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹⁹F NMR spectrum of 5l in CDCl₃

¹H NMR spectrum of **5**l in CDCl₃

¹³C NMR spectrum of **5**l in CDCl₃

^{19}F NMR spectrum of 5m in CDCl_3

¹H NMR spectrum of **5m** in CDCl₃

¹³C NMR spectrum of 5m in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR spectrum of **50** in CDCl₃

¹³C NMR spectrum of **50** in CDCl₃

¹⁹F NMR spectrum of **5p** in CDCl₃

¹H NMR spectrum of **5p** in CDCl₃

¹³C NMR spectrum of **5p** in CDCl₃

¹⁹F NMR spectrum of 5s in CDCl₃

¹H NMR spectrum of **5s** in CDCl₃

¹³C NMR spectrum of 5s in CDCl₃

¹⁹F NMR spectrum of 5t in CDCl₃

¹H NMR spectrum of **5t** in CDCl₃

¹³C NMR spectrum of **5t** in CDCl₃

¹⁹F NMR spectrum of 6a in CDCl₃

¹H NMR spectrum of 6a in CDCl₃

¹³C NMR spectrum of 6a in CDCl₃

¹⁹F NMR spectrum of 6b in CDCl₃

¹H NMR spectrum of **6b** in CDCl₃

¹³C NMR spectrum of **6b** in CDCl₃

¹⁹F NMR spectrum of 6c in CDCl₃

¹H NMR spectrum of 6c in CDCl₃

¹³C NMR spectrum of 6c in CDCl₃

¹⁹F NMR spectrum of 6e in CDCl₃

¹H NMR spectrum of 6e in CDCl₃

¹³C NMR spectrum of 6e in CDCl₃

 $\begin{array}{c} 134,10\\ 1123,34\\ 1123,34\\ 1123,34\\ 1123,39\\ 1127,39\\ 1127,59\\ 1124,57$ 1124,57\\ 1124,57 1124,57 1124,57 1124,57 1124,57 1124,5

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of 6f in CDCl₃

¹H NMR spectrum of 6f in CDCl₃

¹³C NMR spectrum of 6f in CDCl₃

238 7 40	004 102 103 103 103 103 103 103 103 103 103 103	2
45. 43. 40.	223255555757 00288000880000088000000000000000000000	
SVZ		ĺ

¹⁹F NMR spectrum of 6g in CDCl₃

¹H NMR spectrum of 6g in CDCl₃

¹³C NMR spectrum of 6g in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹⁹F NMR spectrum of 6h in CDCl₃

¹H NMR spectrum of 6h in CDCl₃

¹³C NMR spectrum of 6h in CDCl₃

¹⁹F NMR spectrum of 6i in CDCl₃

¹H NMR spectrum of 6i in CDCl₃

¹³C NMR spectrum of 6i in CDCl₃

¹⁹F NMR spectrum of 6k in CDCl₃

¹H NMR spectrum of 6k in CDCl₃

¹³C NMR spectrum of 6k in CDCl₃

31 33	377 375 375 375 375 375 375 375 344
62.	288882222222228882 288882200111111111111

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of 6l in CDCl₃

¹H NMR spectrum of 6l in CDCl₃

¹³C NMR spectrum of 6l in CDCl₃

¹⁹F NMR spectrum of 6m in CDCl₃

¹H NMR spectrum of 6m in CDCl₃

¹³C NMR spectrum of 6m in CDCl₃

159

¹⁹F NMR spectrum of **60** in CDCl₃

¹H NMR spectrum of 60 in CDCl₃

¹³C NMR spectrum of **60** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of 6p in CDCl₃

¹H NMR spectrum of 6p in CDCl₃

¹³C NMR spectrum of 6p in CDCl₃

¹⁹F NMR spectrum of 6s in CDCl₃

¹H NMR spectrum of 6s in CDCl₃

¹³C NMR spectrum of 6s in CDCl₃

¹⁹F NMR spectrum of 6t in CDCl₃

¹H NMR spectrum of 6t in CDCl₃

¹³C NMR spectrum of 6t in CDCl₃

$\begin{array}{c} 550 \\ 449 \\ 91 \\ 91 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$	$\begin{array}{c} 554 \\ 551 \\$
$\begin{array}{c} 43. \\ 42. \\ 41. \\ 41. \\ 41. \\ \end{array}$	0.2.28888888888888888888888888888888888

