Electronic Supplementary Information

Qualitative Extension of the EC' Zone Diagram to a Molecular Catalyst for a Multi-Electron, Multi-Substrate Electrochemical Reaction

Daniel J. Martin, Brian D. McCarthy, Eric S. Rountree, and Jillian L. Dempsey*

Department of Chemistry at the University of North Carolina at Chapel Hill, North Carolina 27599-3290, United States

*email: dempseyj@email.unc.edu

Index	Page
pK_a values in acetonitrile	S2
Summary of variables in Equations 3–4	S2
Impact of k_{obs} via p K_a on waveforms	S3
Calculating rate of slow turnover	S4
Impact of u on waveforms	S4
4-methoxyanilinium acid titrations	S5
4-trifluoromethoxyanilinium acid titrations	S5
References	S5

Table S1. pK_a values in acetonitrile

Acid	para-substituent	р <i>К</i> а	p <i>K</i> _a ref
4-methoxyanilinium	–OCH ₃	11.86	1
4- <i>tert</i> -butylanilinium	-C(CH ₃) ₃	11.1	2
anilinium	n/a	10.62	1
4-chloroanilinium	–Cl	9.7	–Cl 9.7 2
4-trifluoromethoxyanilinium	-OCF ₃	9.28	3
4-(methylbenzoate)anilinium	-COOCH ₃	8.62	3
4-trifluoromethylanilinium	-CF ₃	8.03	1
4-cyanoanilinium	-CN	7	4

 Table S2.
 Summary of variables in Equations 3–4

Variable	Definition	Units
λ	Kinetic dimensionless parameter	n/a
Y	Excess dimensionless parameter	n/a
R	Gas constant (8.3144598 J K ⁻¹ mol ⁻¹)	J K ⁻¹ mol ⁻¹
Т	Temperature	K
F	Faraday constant (96,485.33289 C mol ⁻¹)	C mol⁻¹
k _e	Homogeneous electron transfer rate constant	L mol ⁻¹ s ⁻¹
U	Scan rate	V s⁻¹
C _A	Initial concentration of substrate A	mol L ⁻¹
C ⁰ _P	Initial concentration of catalyst P	mol L ⁻¹

Impact of k_{obs} via p K_a on waveforms

Figure S1. The left-side presents the expected waveform transformation for an ideal EC' system as k_e is increased. The right-hand side shows experimental data for an ECEC' system (1) reflecting changes made to k_{obs} via pK_a modification. Experimental cyclic voltammograms are of solutions containing complex 1 and 0) no substrate; 1) 4-methoxyanilinium; 2) 4-*t*-butylanilinium; 3) anilinium; 4) 4-chloroanilinium; 5) 4-trifluoromethoxyanilinium; 6) 4-(methylbenzoate)anilinium; 7) 4-trifluoromethylanilinium; 8) 4-cyanoanilinium. All solutions were at an excess factor $\gamma = 1$. All scans were performed at 100 mV/s in a 250 mM [Bu₄N][PF₆] CH₃CN solution.

Calculating the rate of slow turnover

The second order rate constant k_2 , describing the rate limiting step, is in the range of 3.39 x 10¹ to 3.28 x 10² M⁻¹ s⁻¹ for acids in which the broad oxidation is apparent (4-methoxyanilinium, 4-*t*-butylanilinium, anilinium). At γ = 1, 0.5 mM acid is present in solution.

$$k_2 \ge [\text{substrate}] = k_{obs}$$

(3.39 x 10¹ M⁻¹ s⁻¹) x (0.0005 M) $\approx 0.02 \text{ s}^{-1}$
(3.28 x 10² M⁻¹ s⁻¹) x (0.0005 M) $\approx 0.2 \text{ s}^{-1}$

Impact of u on waveforms

Figure S2. Each panel contains six voltammograms of solutions containing 0.5 mM **1** and 0.5 mM acid (respective pK_a values are indicated in each panel). The voltammograms in each panel were recorded at 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 V/s.

4-methoxyanilinium acid titrations

Figure S3. Cyclic voltammograms of a 0.5 mM solution of **1** with A) 0 mM; B) 0.5 mM; C) 12 mM; D) 37 mM 4-methoxyanilinium. The catalytic wave approaches a plateau-like shape, transforming from KG/KG* to KD and from KD to the boundary KS. All voltammograms recorded at 100 mV/s in a 250 mM $[Bu_4N][PF_6] CH_3CN$ solution.

4-trifluoromethoxyanilinium acid titrations

Figure S4. Cyclic voltammograms of a 0.5 mM solution of **1** with A) 0 mM; B) 0.5 mM; C) 4.0 mM; D) 46 mM 4-trifluoromethoxyanilinium. At high acid concentrations the catalytic wave approaches a plateau-like KS regime. All voltammograms produced at 100 mV/s in a 250 mM [Bu_4N][PF_6] CH₃CN solution.

References

- 1 I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito and I. a Koppel, *J. Org. Chem.*, 2005, **70**, 1019–28.
- 2 B. D. McCarthy, D. J. Martin, E. S. Rountree, A. C. Ullman and J. L. Dempsey, *Inorg. Chem.*, 2014, **53**, 8350–8361.
- 3 D. J. Martin, E. S. Rountree, B. D. McCarthy and J. L. Dempsey, 2016, Submitted.
- 4 A. M. Appel, S. Lee, J. A. Franz, D. L. DuBois, M. Rakowski DuBois and B. Twamley, *Organometallics*, 2009, **28**, 749–754.