Electronic Supporting Information for:

C–H Activation of Ethers by Pyridine Tethered PC_{sp3}P type Iridium Complexes

Peng Cui, Dominic C. Babbini and Vlad M. Iluc*

DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556

*Corresponding author: viluc@nd.edu

1	X-ray Data for Compounds 6, 9, 10 and 11	S4
	Table S1. Crystal data and structure refinement for 6, 9, 10 and 11	S5
2	NMR Spectra	S6
	2.1 NMR Spectra for $PC^{Py}(OH)P(2)$	S 6
	Figure S1. ¹ H NMR spectrum for $PC^{Py}(OH)P(2)$	S 6
	Figure S2. ³¹ P{ ¹ H} NMR spectrum for $PC^{Py}(OH)P(2)$	S 7
	Figure S3. ¹³ C{ ¹ H} NMR spectrum for $PC^{Py}(OH)P(2)$	S 8
	Figure S4. 1 H- 13 C HSQC NMR spectrum for PC ^{Py} (OH)P (2)	S 9
	2.2 NMR Spectra for $P(O)C^{Py}(OH)P(O)$ (3)	S10
	Figure S5. ¹ H NMR spectrum for $P(O)C^{Py}(OH)P(O)$ (3)	S10
	Figure S6. ³¹ P{ ¹ H} NMR spectrum for $P(O)C^{Py}(OH)P(O)$ (3)	S11
	Figure S7. ¹³ C{ ¹ H} NMR spectrum for $P(O)C^{Py}(OH)P(O)$ (3)	S12
	2.3 NMR Spectra for $P(O)C^{Py}HP(O)$ (4)	S13
	Figure S8. ¹ H NMR spectrum for $P(O)C^{Py}HP(O)$ (4)	S13
	Figure S9. ${}^{31}P{}^{1}H$ NMR spectrum for P(O)C ^{Py} HP(O) (4)	S14
	Figure S10. ¹³ C{ ¹ H} NMR spectrum for $P(O)C^{Py}HP(O)$ (4)	S15
	Figure S11. $^{1}H^{-13}C$ HSQC NMR spectrum for P(O)C ^{Py} HP(O) (4)	S16
	2.4 NMR Spectra for $PC^{Py}HP(5)$	S17
	Figure S12. ¹ H NMR spectrum for $PC^{Py}HP(5)$	S17
	Figure S13. ³¹ P 1 H} NMR spectrum for PC ^{Py} HP (5)	S18
	Figure S14. ¹³ C $\{^{1}H\}$ NMR spectrum for PC ^{Py} HP (5)	S19
	Figure S15. 1 H- 13 C HSQC NMR spectrum for PC ^{Py} HP (5)	S20
	2.5 NMR Spectra for $[(PC^{Py}P)Ir(COD)]$ (6)	S21
	Figure S16. ¹ H NMR spectrum for $[(PC^{Py}P)Ir(COD)]$ (6)	S21
	Figure S17. Variable temperature ¹ H NMR spectrum for $[(PC^{Py}P)Ir(COD)]$ (6)	S22
	Figure S18. ³¹ P{ ¹ H} NMR spectrum for $[(PC^{Py}P)Ir(COD)]$ (6)	S23
	Figure S19. Variable temperature ${}^{31}P{}^{1}H$ NMR spectrum for [(PC ^{Py} P)Ir(COD)] (6)	S24
	Figure S20. Experimental and simulated ${}^{31}P{}^{1}H{}$ NMR spectra for 6	S25
	Figure S21. Eyring plot and analysis for $[(PC^{Py}P)Ir(COD)]$ (6)	S26
	Figure S22. ¹³ C{ ¹ H} NMR spectrum for $[(PC^{Py}P)Ir(COD)]$ (6)	S27
	Figure S23. $^{1}\text{H}-^{13}\text{C}$ HSQC NMR spectrum for [(PC ^{Py} P)Ir(COD)] (6)	S28
	2.6 NMR Spectra for $[(PC^{Py}P)Ir(COE)]$ (7)	S29
	Figure S24. ¹ H NMR spectrum for $[(PC^{Py}P)Ir(COE)]$ (7)	S29
	Figure S25. ³¹ P{ ¹ H} NMR spectrum for $[(PC^{Py}P)Ir(COE)]$ (7)	S30

	Figure S26. ¹³ C{ ¹ H} NMR spectrum for $[(PC^{Py}P)Ir(COE)]$ (7)	S31
	Figure S27. 1 H- 1 H COSY NMR spectrum for [(PC ^{Py} P)Ir(COE)] (7)	S32
	Figure S28. 1 H- 13 C HSQC NMR spectrum for [(PC ^{Py} P)Ir(COE)] (7)	S33
	2.7 NMR Spectra for $[(PC^{Py}P)Ir(H)_2]$ (8)	S34
	Figure S29. ¹ H NMR spectrum for $[(PC^{Py}P)Ir(H)_2]$ (8)	S34
	Figure S30. ³¹ P spectrum for $[(PC^{Py}P)Ir(H)_2]$ (8)	S35
	2.8 NMR Spectra for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9)	S36
	Figure S31. ¹ H NMR spectrum for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9)	S36
	Figure S32. ¹ H NMR spectrum for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9)	S37
	Figure S33. ${}^{31}P{}^{1}H$ NMR spectrum for [(PC ^{Py} P)IrH(C ₄ H ₇ O)] (9)	S38
	Figure S34. ${}^{13}C{}^{1}H$ NMR spectrum for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9)	S39
	Figure S35. ¹ H- ¹ H COSY NMR spectrum for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9)	S40
	Figure S36. $^{1}H^{-13}C$ HSQC NMR spectrum for [(PC ^{Py} P)IrH(C ₄ H ₇ O)] (9)	S41
	2.9 NMR Spectra for $[(PC^{Py}P)IrH(CH_2O^tBu)]$ (10)	S42
	Figure S37. ¹ H NMR spectrum for $[(PC^{Py}P)IrH(CH_2O^tBu)]$ (10)	S42
	Figure S38. ¹ H NMR spectrum for $[(PC^{Py}P)IrH(CH_2O^tBu)]$ (10)	S43
	Figure S39. ³¹ P spectrum for $[(PC^{Py}P)IrH(CH_2O^tBu)]$ (10)	S44
	Figure S40. ¹³ C{ ¹ H} NMR spectrum for $[(PC^{Py}P)IrH(CH_2O'Bu)]$ (10)	S45
	Figure S41. ¹ H- ¹ H COSY NMR spectrum for $[(PC^{Py}P)IrH(CH_2O'Bu)]$ (10)	S46
	Figure S42. ¹ H- ¹³ C HSQC NMR spectrum for $[(PC^{Fy}P)IrH(CH_2O'Bu)]$ (10)	S47
	2.10 NMR Spectra for $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (11)	S48
	Figure S43. ¹ H NMR spectrum for $[(PC^{ry}P)IrH(C_4H_7O)(CCHPh)]$ (11)	S48
	Figure S44. ³¹ P{ ¹ H} NMR spectrum for $[(PC^{ry}P)IrH(C_4H_7O)(CCHPh)](\Pi)$	S49
	Figure S45. ¹³ C{ ¹ H} NMR spectrum for [(PC ⁺ yP)lrH(C ₄ H ₇ O)(CCHPh)] (11)	S50
	Figure S46. ¹ H- ¹⁵ C HSQC NMR spectrum for $[(PC^{+y}P)IrH(C_4H_7O)(CCHPh)]$ (11)	551
	2.11 NMR Spectra for $[(PC^{*}P)IrD(C_6D_5)]$	S52
	Figure S47. ⁻ H NMR spectrum for $[(PC^{*}P)IrD(C_6D_5)]$	332
3	Crystallographic tables	S53
-	3.1 Crystal data for [(PC ^{Py} P)Ir(COD)] (6)	S53
	Figure S48. Thermal-ellipsoid representation of 6	S53
	Table S2. Crystal data and structure refinement for 6	S54
	Table S3. Atomic coordinates and equivalent isotropic displacement parameters	
	$(Å^2)$ for 6	S55
	Table S4. Anisotropic displacement parameters (Å ²) for 6	S58
	Table S5. Distances [Å] for 6	S60
	Table S6. Angles [°] for 6	S62
	3.2 Crystal data for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9)	S65
	Figure S49. Thermal-ellipsoid representation of 9	S65
	Table S7. Crystal data and structure refinement for 9	S66
	Table S8. Atomic coordinates and equivalent isotropic displacement parameters	
	(\check{A}^2) for 9	S67
	Table S9. Anisotropic displacement parameters ($Å^2$) for 9	S70
	Table S10. Distances [Å] for 9	S72
	Table S11. Angles [°] for 9	S74

3.3 Crystal data for $[(PC^{Py}P)IrH(CH_2O'Bu] (10)$	S77			
Figure S50. Thermal-ellipsoid representation of 10				
Table S12. Crystal data and structure refinement for 10	S78			
Table S13. Atomic coordinates and equivalent isotropic displacement parameters				
$(Å^2)$ for 10	S79			
Table S14. Anisotropic displacement parameters $(Å^2)$ for 10	S82			
Table S15. Distances [Å] for 10	S84			
Table S16. Angles [°] for 10	S86			
3.4 Crystal data for $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (11)	S89			
Figure S51. Thermal-ellipsoid representation of 11	S89			
Table S17. Crystal data and structure refinement for 11	S90			
Table S18. Atomic coordinates and equivalent isotropic displacement parameters				
$(Å^2)$ for 11	S91			
Table S19. Anisotropic displacement parameters $(Å^2)$ for 11	S94			
Table S20. Distances [Å] for 11	S96			
Table S21. Angles [°] for 11	S98			

1 X-ray Data for Compounds 6, 9, 10 and 11

X–Ray crystal structure of [(**PC**^{Py}**P**)**Ir**(**COD**)] (6). Single crystals were obtained as pale orange blocks by diffusion of *n*-pentane into a concentrated THF solution at room temperature in the glovebox. Crystal and refinement data for **6**: $C_{50}H_{44}IrNP_2$; $M_r = 913.00$; Monoclinic; space group $P2_1/n$; a = 9.9433(4) Å; b = 24.0410(9) Å; c = 15.8819(6) Å; $\alpha = 90^\circ$; $\beta = 91.8887(14)^\circ$; $\gamma = 90^\circ$; V = 3794.5(3) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 3.641$ mm⁻¹; d_{calc} = 1.598 g·cm⁻³; 53230 reflections collected; 6681 unique (R_{int} = 0.0281); giving R₁ = 0.0149, wR₂ = 0.0326 for 6197 data with [I>2 σ (I)] and R₁ = 0.0175, wR₂ = 0.0332 for all 6681 data. Residual electron density (e⁻·Å⁻³) max/min: 0.346/-0.393.

X–**Ray crystal structure of** [(**PC**^{Py}**P**)**IrH**(**C**₄**H**₇**O**)] (9). Single crystals were obtained in the glovebox as pale-yellow blocks by diffusion of *n*-pentane into a concentrated THF solution at room temperature in the presence of small amount of NBE. Crystal and refinement data for 9: C₄₆H₄₀IrNOP₂; M_r = 876.93; Monoclinic; space group *C*2/*c*; *a* = 42.2630(17) Å; *b* = 9.1164(4) Å; *c* = 18.8750(7) Å; $\alpha = 90^{\circ}$; $\beta = 92.105(3)^{\circ}$; $\gamma = 90^{\circ}$; V = 7267.4(5) Å³; Z = 8; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 3.801$ mm⁻¹; d_{calc} = 1.603 g·cm⁻³; 55245 reflections collected; 6399 unique (R_{int} = 0.0551); giving R₁ = 0.0296, wR₂ = 0.0608 for 5483 data with [I>2 σ (I)] and R₁ = 0.0393, wR₂ = 0.0635 for all 6399 data. Residual electron density (e⁻·Å⁻³) max/min: 1.100/–0.612. The deprotonated THF molecule substituent on the iridium atom is disordered over two positions and this disorder was modeled (occupancy is 44% for one and 56% for the other position)

X–Ray crystal structure of [(**PC**^{Py}**P**)**IrH**(**CH**₂**O**'**Bu**] (10). Single crystals were obtained as pale-yellow blocks by diffusion of *n*-pentane into a concentrated THF solution at -35 °C in the glovebox. Crystal and refinement data for **10**: C₄₇H₄₄IrNOP₂; M_r = 892.97; Monoclinic; space group *P*2₁/*c*; *a* = 17.280(3) Å; *b* = 14.146(2) Å; *c* = 18.792(3) Å; *α* = 90°; β = 104.829(2)°; $\gamma = 90^{\circ}$; V = 4440.5(11) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 3.111$ mm⁻¹; d_{calc} = 1.336 g·cm⁻³; 66672 reflections collected; 7823 unique (R_{int} = 0.0705); giving R₁ = 0.0315, wR₂ = 0.0676 for 6216 data with [I>2σ(I)] and R₁ = 0.0493, wR₂ = 0.0723 for all 7823 data. Residual electron density (e⁻·Å⁻³) max/min: 0.997/–0.515. A highly disordered molecule of *n*-pentane was removed using the SQUEEZE function in PLATON.

X–**Ray crystal structure of** [(**PC**^{Py}**P**)**IrH**(**C**₄**H**₇**O**)(**CCHPh**)] (11). Single crystals were obtained as red needles by diffusion of *n*-pentane into a concentrated THF solution at room temperature in the glovebox. Crystal and refinement data for **11**: C₅₄H₄₆IrNOP₂; M_r = 979.06; Triclinic; space group $P\bar{1}$; a = 10.4635(10) Å; b = 13.3359(12) Å; c = 15.8836(15) Å; $\alpha = 77.710(2)^{\circ}$; $\beta = 80.875(3)^{\circ}$; $\gamma = 85.402(2)^{\circ}$; V = 2135.7(3) Å³; Z = 2; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 3.242$ mm⁻¹; d_{calc} = 1.522 g·cm⁻³; 18693 reflections collected; 7517 unique (R_{int} = 0.0626); giving R₁ = 0.0436, wR₂ = 0.0868 for 6065 data with [I>2 σ (I)] and R₁ = 0.0635, wR₂ = 0.0919 for all 7517 data. Residual electron density (e⁻·Å⁻³) max/min: 3.649/–3.069. The deprotonated THF molecule substituent on the iridium atom is disordered over two positions and this disorder was modeled (occupancy is 80% for one and 20% for the other position).

Compound:	6	9	10	11
Identification code:	pc7	pc25	pc13	pc8b
Empirical formula:	$C_{50}H_{44}$ IrNP ₂	$C_{46}H_{40}IrNOP_2$	$C_{47}H_{44}$ IrNOP ₂	$C_{54}H_{46}IrNOP_2$
Formula weight:	913.00	876.93	892.97	979.06
Temperature:	120(2) K	120(2) K	120(2) K	120(2) K
Wavelength:	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system:	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group:	$P2_{1}/n$	C2/c	$P2_{1}/c$	PĪ
Unit cell dimensions:	a = 9.9433(4) Å	a = 42.2630(17)	a = 17.280(3) Å	a = 10.4635(10) Å
	b = 24.0410(9) Å	b = 9.1164(4) Å	b = 14.146(2) Å	b = 13.3359(12) Å
	c = 15.8819(6) Å	c = 18.8750(7) Å	c = 18.792(3) Å	c = 15.8836(15) Å
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 77.710(2)^{\circ}$
	$\beta = 91.8887(14)^{\circ}$	$\beta = 92.105(3)^{\circ}$	$\beta = 104.829(2)^{\circ}$	$\beta = 80.875(3)^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 85.402(2)^{\circ}$
Volume:	3794.5(3) Å ³	7267.4(5) Å ³	$4440.5(11) Å^3$	2135.7(3) Å ³
Z:	4	8	4	2
Density (calculated):	$1.598 \text{ g} \cdot \text{cm}^{-3}$	$1.603 \text{ g} \cdot \text{cm}^{-3}$	$1.336 \text{ g} \cdot \text{cm}^{-3}$	$1.522 \text{ g} \cdot \text{cm}^{-3}$
Absorption coefficient (μ):	3.641 mm^{-1}	3.801 mm^{-1}	3.111 mm^{-1}	3.242 mm^{-1}
F(000):	1832	3504	1792	984
Crystal size:	$0.04 \times 0.03 \times 0.03 \text{ mm}^3$	$0.11 \times 0.09 \times 0.08 \text{ mm}^3$	$0.09 \times 0.08 \times 0.08 \text{ mm}^3$	$0.09 \times 0.08 \times 0.07 \text{ mm}^3$
θ range for data collection:	1.54 to 25.00°	0.96 to 25.00°	1.22 to 25.00°	1.56 to 25.00°
Index ranges:	$-7 \le h \le 11$	$-50 \le h \le 50$	$-20 \le h \le 20$	$-12 \le h \le 11$
	$-28 \le k \le 28$	$-7 \le k \le 10$	$-16 \le k \le 16$	$-15 \le k \le 14$
	$-18 \le l \le 18$	$-22 \le l \le 22$	$-22 \le l \le 22$	$-18 \le l \le 16$
Reflections collected:	53230	55245	66672	18693
Independent reflections:	6681 [$\mathbf{R}_{int} = 0.0281$]	6399 [$R_{int} = 0.0551$]	7823 [$\mathbf{R}_{int} = 0.0705$]	7517 [$\mathbf{R}_{int} = 0.0626$]
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	100.0 %	100.0 %	100.0 %
Absorption correction:	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
Max. and min. transmission:	0.7073 and 0.5743	0.7457 and 0.6140	0.7455 and 0.6604	0.7454 and 0.6201
Refinement method:	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters:	6681 / 0 / 487	6399 / 0 / 453	7823 / 0 / 476	7517 / 0 / 537
Goodness-of-fit on F ² :	1.049	1.052	1.047	0.981
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0149, wR_2 = 0.0326$	$R_1 = 0.0296, wR_2 = 0.0608$	$R_1 = 0.0315, wR_2 = 0.0676$	$R_1 = 0.0436, wR_2 = 0.0868$
R indices (all data):	$R_1 = 0.0175, wR_2 = 0.0332$	$R_1 = 0.0393, wR_2 = 0.0635$	$R_1 = 0.0493, wR_2 = 0.0723$	$R_1 = 0.0635, wR_2 = 0.0919$
Largest diff. peak and hole:	0.346 and $-0.393 \text{ e}^{-1} \text{\AA}^{-3}$	1.100 and $-0.612 \text{ e}^{-1} \text{Å}^{-3}$	0.997 and $-0.515 \text{ e}^{-1} \text{Å}^{-3}$	3.649 and $-3.069 \text{ e}^{-1} \text{Å}^{-3}$

 Table S1. Crystal data and structure refinement for 6, 9, 10 and 11.

2 NMR Spectra

2.1 NMR Spectra for PC^{Py}(OH)P (2)

Figure S1. ¹H NMR spectrum for $PC^{Py}(OH)P(2)$.

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum for PC^{Py}(OH)P (2).

Figure S4. $^{1}\text{H}^{-13}\text{C}$ HSQC NMR spectrum for PC^{Py}(OH)P (2).

2.2 NMR Spectra for $P(O)C^{Py}(OH)P(O)$ (3)

Figure S5. ¹H NMR spectrum for $P(O)C^{Py}(OH)P(O)$ (3).

Figure S6. ${}^{31}P{}^{1}H$ NMR spectrum for P(O)C^{Py}(OH)P(O) (**3**).

-S12-

2.3 NMR Spectra for P(O)C^{Py}HP(O) (4)

7.45 7.35 7.35 7.35 7.31 7.31 7.31 7.31 7.31 7.31 7.31 6.51 6.50 6.50 6.48 6.48

6.48 6.48

Figure S8. ¹H NMR spectrum for $P(O)C^{Py}HP(O)$ (4).

Figure S9. ${}^{31}P{}^{1}H$ NMR spectrum for P(O)C^{Py}HP(O) (4).

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum for P(O)C^{Py}HP(O) (4).

Figure S11. 1 H- 13 C HSQC NMR spectrum for P(O)C^{Py}HP(O) (4).

2.4 NMR Spectra for PC^{Py}HP (5)

Figure S12. ¹H NMR spectrum for PC^{Py}HP (**5**).

Figure S13. ${}^{31}P{}^{1}H$ NMR spectrum for PC^{Py}HP (5).

Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum for PC^{Py}HP (5).

Figure S15. 1 H- 13 C HSQC NMR spectrum for PC^{Py}HP (5).

2.5 NMR Spectra for [(PC^{Py}P)Ir(COD)] (6)

Figure S16. ¹H NMR spectrum for $[(PC^{Py}P)Ir(COD)]$ (6).

Figure S17. Variable temperature ¹H NMR spectrum for $[(PC^{Py}P)Ir(COD)]$ (6).

Figure S18. ${}^{31}P{}^{1}H$ NMR spectrum for [(PC^{Py}P)Ir(COD)] (6).

Figure S19. Variable temperature ${}^{31}P{}^{1}H$ NMR spectrum for [(PC^{Py}P)Ir(COD)] (6).

Figure S20. Experimental and simulated ${}^{31}P{}^{1}H$ NMR spectra for 6.

Figure S21. Eyring plot and analysis for [(PC^{Py}P)Ir(COD)] (6).

Figure S22. ${}^{13}C{}^{1}H$ NMR spectrum for [(PC^{Py}P)Ir(COD)] (6).

Figure S23. ^{1}H - ^{13}C HSQC NMR spectrum for [(PC^{Py}P)Ir(COD)] (6).

2.6 NMR Spectra for $[(PC^{Py}P)Ir(COE)]$ (7)

Figure S24. ¹H NMR spectrum for $[(PC^{Py}P)Ir(COE)]$ (7).

Figure S26. ¹³C{¹H} NMR spectrum for $[(PC^{Py}P)Ir(COE)]$ (7).

Figure S27. $^{1}H^{-1}H$ COSY NMR spectrum for $[(PC^{Py}P)Ir(COE)]$ (7).

Figure S28. 1 H- 13 C HSQC NMR spectrum for [(PC^{Py}P)Ir(COE)] (7).

2.7 NMR Spectra for $[(PC^{Py}P)Ir(H)_2]$ (8)

Figure S29. ¹H NMR spectrum for $[(PC^{Py}P)Ir(H)_2]$ (8).

Figure S30. ³¹P spectrum for $[(PC^{Py}P)Ir(H)_2]$ (8).

2.8 NMR Spectra for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9)

Figure S31. ¹H NMR spectrum for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9).

Figure S32. ¹H NMR spectrum for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9).

Figure S33. ${}^{31}P{}^{1}H$ NMR spectrum for [(PC^{Py}P)IrH(C₄H₇O)] (9).

Figure S34. ¹³C{¹H} NMR spectrum for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9).

Figure S35. $^{1}\text{H}^{-1}\text{H}$ COSY NMR spectrum for $[(PC^{Py}P)IrH(C_{4}H_{7}O)]$ (9).

Figure S36. ^{1}H - ^{13}C HSQC NMR spectrum for [(PC^{Py}P)IrH(C₄H₇O)] (9).

2.9 NMR Spectra for [(PC^{Py}P)IrH(CH₂O^tBu)] (10)

Figure S37. ¹H NMR spectrum for $[(PC^{Py}P)IrH(CH_2O'Bu)]$ (10).

Figure S38. ¹H NMR spectrum for $[(PC^{Py}P)IrH(CH_2O'Bu)]$ (10).

Figure S39. ³¹P spectrum for $[(PC^{Py}P)IrH(CH_2O'Bu)]$ (10).

Figure S40. ¹³C{¹H} NMR spectrum for $[(PC^{Py}P)IrH(CH_2O'Bu)]$ (10).

Figure S41. 1 H- 1 H COSY NMR spectrum for [(PC^{Py}P)IrH(CH₂O'Bu)] (10).

Figure S42. 1 H- 13 C HSQC NMR spectrum for [(PC^{Py}P)IrH(CH₂O'Bu)] (10).

2.10 NMR Spectra for [(PC^{Py}P)IrH(C₄H₇O)(CCHPh)] (11)

Figure S43. ¹H NMR spectrum for $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (11).

Figure S44. ${}^{31}P{}^{1}H$ NMR spectrum for [(PC^{Py}P)IrH(C₄H₇O)(CCHPh)] (11).

Figure S45. ¹³C{¹H} NMR spectrum for $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (11).

Figure S46. $^{1}H^{-13}C$ HSQC NMR spectrum for [(PC^{Py}P)IrH(C₄H₇O)(CCHPh)] (11).

2.11 NMR Spectra for [(PC^{Py}P)IrD(C₆D₅)]

Figure S47. ²H NMR spectrum for $[(PC^{Py}P)IrD(C_6D_5)]$.

3 Crystallographic tables

3.1 Crystal data for [(PC^{Py}P)Ir(COD)] (6)

Figure S48. Thermal-ellipsoid representation of $[(PC^{Py}P)Ir(COD)]$ (6) at 50% probability. Hydrogen atoms were omitted for clarity.

Identification code:	pc7	
Empirical formula:	$C_{50}H_{44}IrNP_2$	
Formula weight:	913.00	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/n$	
Unit cell dimensions:	a = 9.9433(4) Å	$\alpha = 90^{\circ}$
	b = 24.0410(9) Å	$\beta = 91.8887(14)^{\circ}$
	c = 15.8819(6) Å	$\gamma = 90^{\circ}$
Volume:	3794.5(3) Å ³	
Z:	4	
Density (calculated):	$1.598 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	3.641 mm^{-1}	
F(000):	1832	
Crystal size:	$0.04 \times 0.03 \times 0.03 \text{ mm}^3$	
θ range for data collection:	1.54 to 25.00°	
Index ranges:	$-7 \le h \le 11, -28 \le k \le 28, -18 \le l \le 18$	
Reflections collected:	53230	
Independent reflections:	6681 [$\mathbf{R}_{int} = 0.0281$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7073 and 0.5743	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	6681 / 0 / 487	
Goodness-of-fit on F ² :	1.049	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0149, wR_2 = 0.0326$	
R indices (all data):	$R_1 = 0.0175, wR_2 = 0.0332$	
Largest diff. peak and hole:	0.346 and $-0.393 \text{ e}^{-1} \text{Å}^{-3}$	

Table S2. Crystal data and structure refinement for $[(PC^{Py}P)Ir(COD)]$ (6).

-

atom	X	y	Z	U(eq)
Ir	0.47012(1)	0.11211(1)	0.75326(1)	0.010(1)
C(1)	0.4557(2)	0.02436(8)	0.73296(13)	0.016(1)
P(2)	0.49360(5)	0.14602(2)	0.61840(3)	0.011(1)
C(2)	0.4525(2)	0.03536(8)	0.82204(13)	0.016(1)
C(5)	0.2637(2)	0.11912(9)	0.80258(14)	0.019(1)
C(4)	0.2409(2)	0.08027(9)	0.87535(14)	0.021(1)
C(3)	0.3245(2)	0.02716(9)	0.87056(14)	0.020(1)
C(6)	0.2528(2)	0.10324(9)	0.71816(14)	0.019(1)
C(7)	0.2136(2)	0.04490(10)	0.68996(14)	0.023(1)
C(8)	0.3332(2)	0.00539(9)	0.68239(14)	0.022(1)
C(21)	0.6567(2)	0.11993(8)	0.58971(12)	0.012(1)
C(15)	0.7925(2)	-0.03252(9)	0.82304(15)	0.025(1)
C(14)	0.8304(2)	-0.02604(10)	0.90616(15)	0.029(1)
C(13)	0.8273(2)	0.02711(10)	0.93893(14)	0.025(1)
C(12)	0.7857(2)	0.07096(9)	0.88838(13)	0.017(1)
C(11)	0.7477(2)	0.06096(8)	0.80434(13)	0.014(1)
C(22)	0.7358(2)	0.09819(8)	0.65566(12)	0.012(1)
C(83)	0.4551(3)	0.34693(9)	0.74406(14)	0.024(1)
C(23)	0.8576(2)	0.07328(9)	0.63503(13)	0.016(1)
C(84)	0.3239(3)	0.35732(9)	0.76314(14)	0.027(1)
C(24)	0.8986(2)	0.07074(9)	0.55300(13)	0.020(1)
C(85)	0.2528(2)	0.31825(9)	0.80719(14)	0.024(1)
C(25)	0.8200(2)	0.09385(10)	0.48809(13)	0.022(1)
C(86)	0.3138(2)	0.26883(9)	0.83239(13)	0.018(1)
C(26)	0.6995(2)	0.11845(9)	0.50682(13)	0.018(1)
C(31)	0.6962(2)	0.19999(8)	0.82571(12)	0.014(1)
C(32)	0.7635(2)	0.16142(8)	0.77751(12)	0.013(1)
C(33)	0.9003(2)	0.17098(9)	0.76514(13)	0.016(1)
C(34)	0.9655(2)	0.21658(9)	0.79965(13)	0.018(1)
C(35)	0.8985(2)	0.25338(9)	0.85016(13)	0.019(1)
C(36)	0.7642(2)	0.24470(9)	0.86338(13)	0.018(1)
C(54)	0.2091(2)	0.07023(9)	0.41030(13)	0.021(1)
C(55)	0.1758(2)	0.11976(9)	0.44756(13)	0.019(1)
C(56)	0.2604(2)	0.14319(9)	0.50887(13)	0.016(1)
C(61)	0.4965(2)	0.21983(8)	0.58814(12)	0.015(1)
C(62)	0.3806(2)	0.25226(9)	0.59375(13)	0.017(1)
C(63)	0.3766(2)	0.30588(9)	0.56230(14)	0.023(1)
C(64)	0.4905(3)	0.32924(9)	0.52893(14)	0.026(1)
C(65)	0.6086(3)	0.29936(9)	0.52911(14)	0.025(1)
C(66)	0.6114(2)	0.24465(9)	0.55723(13)	0.019(1)
			Cont	inued on next page

Table S3. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[(PC^{Py}P)Ir(COD)]$ (6). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor.

atom	X	y	X	U(eq)
C(71)	0.5000(2)	0.18514(9)	0.95051(13)	0.016(1)
C(72)	0.5087(2)	0.13349(10)	0.98965(13)	0.020(1)
C(73)	0.5009(2)	0.12865(11)	1.07642(14)	0.028(1)
C(74)	0.4847(2)	0.17590(11)	1.12482(14)	0.031(1)
C(75)	0.4772(2)	0.22739(11)	1.08710(14)	0.029(1)
C(76)	0.4849(2)	0.23236(10)	1.00059(13)	0.022(1)
Ν	0.75361(18)	0.00924(7)	0.77184(11)	0.019(1)
C(82)	0.5160(2)	0.29682(9)	0.76638(13)	0.019(1)
C(81)	0.4463(2)	0.25692(8)	0.81096(13)	0.015(1)
С	0.6944(2)	0.10700(8)	0.74700(12)	0.012(1)
C(53)	0.3273(2)	0.04400(9)	0.43496(14)	0.023(1)
C(52)	0.4119(2)	0.06743(9)	0.49605(13)	0.019(1)
C(51)	0.3808(2)	0.11785(8)	0.53408(12)	0.013(1)
P(1)	0.51838(5)	0.18831(2)	0.83562(3)	0.012(1)
H(1)	0.5415	0.0069	0.7150	0.020
H(2)	0.5365	0.0243	0.8541	0.019
H(5)	0.2347	0.1583	0.8130	0.023
H(4A)	0.1443	0.0703	0.8758	0.026
H(4B)	0.2640	0.0998	0.9288	0.026
H(3A)	0.3488	0.0145	0.9284	0.025
H(3B)	0.2695	-0.0023	0.8429	0.025
H(6)	0.2174	0.1332	0.6798	0.023
H(7A)	0.1651	0.0472	0.6346	0.028
H(7B)	0.1508	0.0291	0.7307	0.028
H(8A)	0.3069	-0.0321	0.7018	0.027
H(8B)	0.3563	0.0024	0.6224	0.027
H(15)	0.7938	-0.0690	0.8002	0.030
H(14)	0.8578	-0.0569	0.9399	0.035
H(13)	0.8537	0.0335	0.9961	0.031
H(12)	0.7829	0.1076	0.9106	0.020
H(83)	0.5048	0.3743	0.7153	0.029
H(23)	0.9135	0.0577	0.6786	0.019
H(84)	0.2822	0.3912	0.7461	0.033
H(24)	0.9811	0.0531	0.5408	0.024
H(85)	0.1618	0.3252	0.8203	0.029
H(25)	0.8489	0.0927	0.4317	0.026
H(86)	0.2653	0.2428	0.8645	0.022
H(26)	0.6450	0.1345	0.4630	0.022
H(33)	0.9493	0.1455	0.7322	0.019
H(34)	1.0576	0.2228	0.7886	0.021
H(35)	0.9443	0.2841	0.8753	0.023
H(36)	0.7172	0.2694	0.8986	0.021
			Conti	nued on next page

Table S3. – continued from previous page

		r		
atom	X	У	X	U(eq)
H(54)	0.1513	0.0543	0.3681	0.025
H(55)	0.0943	0.1380	0.4312	0.023
H(56)	0.2356	0.1773	0.5342	0.019
H(62)	0.3037	0.2373	0.6195	0.021
H(63)	0.2955	0.3267	0.5636	0.028
H(64)	0.4871	0.3657	0.5060	0.031
H(65)	0.6884	0.3162	0.5099	0.030
H(66)	0.6926	0.2239	0.5554	0.023
H(72)	0.5202	0.1010	0.9565	0.024
H(73)	0.5067	0.0931	1.1024	0.034
H(74)	0.4788	0.1728	1.1842	0.037
H(75)	0.4667	0.2597	1.1207	0.035
H(76)	0.4798	0.2681	0.9751	0.026
H(82)	0.6059	0.2898	0.7511	0.022
H(53)	0.3507	0.0096	0.4098	0.027
H(52)	0.4929	0.0488	0.5124	0.023

Table S3. – continued from previous page

atom U ₁₁	Un	U22	U ₂₂	U ₁₃	U12
Ir 0.0086	$\frac{222}{5(1)}$ 0.0111(1)	0.0097($\frac{-2.5}{1) -0.0001(1)}$	0.0006(1)	-0.0004(1)
C(1) 0.0176	6(12) $0.0094(10)$	0.0224((11) -0.0008(8)	0.0027(9)	-0.0007(9)
P(2) 0.0099	0(3) $0.0123(3)$	0.01100	$\begin{array}{c} 2) & 0.0008(2) \end{array}$	-0.0006(2)	0.0000(2)
C(2) = 0.0142	2(11) 0.0118(10)	0.0210($\begin{array}{c} 11 \\ 0.0038(9) \\ \end{array}$	0.0010(9)	-0.0008(9)
C(5) 0.0096	5(11) 0.0191(11)	0.0285(12) 0.0000(9)	0.0048(9)	0.0016(9)
C(4) 0.0164	4(12) 0.0276(13)	0.0206(12) -0.0006(10)	0.0061(9)	-0.0026(10)
C(3) 0.0203	3(12) 0.0206(12)	0.0206	11) 0.0047(9)	0.0039(10)	-0.0031(10)
C(6) 0.0093	3(11) 0.0230(12)	0.0254(12) 0.0051(9)	-0.0010(9)	-0.0002(9)
C(7) 0.0168	8(12) 0.0321(13)	0.0211(12) 0.0012(10)	-0.0034(10)	-0.0080(10)
C(8) 0.0251	l(13) 0.0192(12)	0.0220(12) -0.0010(9)	0.0002(10)	-0.0051(10)
C(21) 0.0107	7(10) 0.0139(10)	0.0128(10) 0.0002(8)	0.0011(8)	-0.0019(8)
C(15) 0.0252	2(13) 0.0162(11)	0.0348(14) 0.0047(10)	0.0063(11)	0.0062(10)
C(14) 0.0243	3(13) 0.0293(14)	0.0340(14) 0.0187(11)	0.0024(11)	0.0090(11)
C(13) 0.0186	6(12) 0.0408(15)	0.0168(11) 0.0104(10)	-0.0024(10)	-0.0032(11)
C(12) 0.0131	1(11) 0.0223(11)	0.0143(10) 0.0011(9)	-0.0003(9)	-0.0026(9)
C(11) 0.0069	0(10) 0.0180(11)	0.0170(10) 0.0025(9)	0.0026(8)	0.0002(9)
C(22) 0.0119	0(11) 0.0114(10)	0.0129(10) -0.0013(8)	0.0005(8)	-0.0033(8)
C(83) 0.0347	7(15) 0.0157(11)	0.0222(12) -0.0013(9)	-0.0030(11)	-0.0047(10)
C(23) 0.0132	2(11) 0.0203(11)	0.0143(10) -0.0002(9)	-0.0010(9)	0.0008(9)
C(84) 0.0397	7(16) 0.0173(12)	0.0244(12) -0.0059(10)	-0.0057(11)	0.0084(11)
C(24) 0.0132	2(11) 0.0284(12)	0.0183(11) -0.0038(9)	0.0030(9)	0.0027(10)
C(85) 0.0228	3(13) 0.0256(13)	0.0249(12) -0.0104(10)	-0.0018(10)	0.0085(10)
C(25) 0.0200	0(12) 0.0328(13)	0.0123(11) -0.0017(9)	0.0043(9)	-0.0015(10)
C(86) 0.0180	0(12) 0.0185(11)	0.0185(11) -0.0062(9)	-0.0002(9)	-0.0001(9)
C(26) 0.0146	5(11)0.0259(12)	0.0135(10) 0.0029(9)	-0.0012(9)	-0.0007(10)
C(31) 0.0113	B(11) 0.0180(11)	0.0114(10) 0.0007(8)	-0.0019(8)	0.0014(9)
C(32) 0.0132	2(11) 0.0154(10)	0.0092(9) 0.0053(8)	-0.0006(8)	0.0006(9)
C(33) 0.0138	8(11) 0.0198(11)	0.0140(10) 0.0001(9)	0.0022(9)	0.0017(9)
C(34) 0.0107	7(11) 0.0227(12)	0.0196(11) 0.0026(9)	-0.0012(9)	-0.0041(9)
C(35) 0.0183	3(12) 0.0189(11)	0.0193(11) -0.0021(9)	-0.0044(9)	-0.0061(9)
C(36) 0.0184	4(12) 0.0183(11)	0.0158(11) -0.0041(9)	-0.0002(9)	0.0014(9)
C(54) 0.0225	5(13) 0.0239(12)	0.0154(11) -0.0005(9)	-0.0057(9)	-0.0070(10)
C(55) 0.0161	l(12) 0.0192(12)	0.0216(11) 0.0055(9)	-0.0072(9)	-0.0016(9)
C(56) 0.0185	5(12) 0.0130(11)	0.0170($\begin{array}{c} 11) & 0.0010(8) \\ 0.0010(8) \\ 0.0001(8) \\ 0.000$	-0.0026(9)	-0.0008(9)
C(61) 0.0159	P(11) = 0.0155(11)	0.0121(10) -0.0001(8)	-0.0043(9)	-0.0017(9)
C(62) 0.0156	p(12) = 0.0173(11)	0.0184(11) -0.0050(9)	-0.0042(9)	-0.0016(9)
C(63) 0.0260	D(13) = 0.0175(11)	0.0254(12) -0.0050(10)	-0.0124(10)	0.0047(10)
C(64) 0.0370	D(15) = 0.0141(11)	0.0252($12) 0.0030(9) \\ 12) 0.0040(10)$	-0.0076(11)	-0.0021(11)
C(65) = 0.0291	1(14) 0.0223(12)	0.0227($\begin{array}{cccc} 12) & 0.0042(10) \\ 11) & 0.0010(0) \\ \end{array}$	0.0003(10)	-0.0093(11)
C(66) = 0.0172	2(12) 0.0194(11)	0.0208(11) 0.0019(9)	-0.0011(9)	-0.0015(9)

Table S4. Anisotropic displacement parameters (Å²) for [(PC^{Py}P)Ir(COD)] (6). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(71)	0.0098(11)	0.0263(12)	0.0131(10)	-0.0039(9)	0.0006(9)	-0.0010(9)
C(72)	0.0179(12)	0.0260(12)	0.0155(11)	-0.0022(9)	0.0011(9)	-0.0012(10)
C(73)	0.0257(14)	0.0390(15)	0.0193(12)	0.0056(11)	-0.0007(10)	-0.0006(11)
C(74)	0.0279(14)	0.0536(17)	0.0115(11)	-0.0033(11)	0.0002(10)	-0.0014(12)
C(75)	0.0255(14)	0.0424(15)	0.0194(12)	-0.0117(11)	0.0013(10)	0.0014(12)
C(76)	0.0189(12)	0.0290(13)	0.0178(11)	-0.0078(10)	-0.0012(10)	-0.0006(10)
Ν	0.0168(10)	0.0167(9)	0.0222(10)	0.0012(8)	0.0040(8)	0.0037(8)
C(82)	0.0193(12)	0.0187(11)	0.0178(11)	-0.0041(9)	-0.0008(9)	-0.0025(9)
C(81)	0.0160(11)	0.0161(11)	0.0131(10)	-0.0063(8)	-0.0029(9)	-0.0002(9)
С	0.0116(10)	0.0139(10)	0.0106(10)	0.0001(8)	0.0003(8)	-0.0003(9)
C(53)	0.0255(13)	0.0209(12)	0.0211(12)	-0.0082(9)	-0.0003(10)	-0.0006(10)
C(52)	0.0158(12)	0.0214(11)	0.0197(11)	-0.0013(9)	-0.0004(9)	0.0026(9)
C(51)	0.0136(11)	0.0145(10)	0.0099(10)	0.0023(8)	0.0008(8)	-0.0034(9)
P(1)	0.0105(3)	0.0143(3)	0.0120(3)	-0.0021(2)	0.0010(2)	-0.0001(2)

Table S4. – continued from previous page

atom – atom	distance	atom – atom	distance
Ir-C(1)	2.138(2)	Ir - C(2)	2.154(2)
$\operatorname{Ir} - \operatorname{C}(6)$	2.224(2)	$\operatorname{Ir} - \operatorname{C}(5)$	2.227(2)
Ir-C	2.239(2)	Ir - P(1)	2.2925(5)
Ir - P(2)	2.3106(5)	C(1) - C(2)	1.441(3)
C(1) - C(8)	1.507(3)	C(1) - H(1)	1.0000
P(2) - C(21)	1.811(2)	P(2) - C(61)	1.839(2)
P(2) - C(51)	1.847(2)	C(2) - C(3)	1.522(3)
C(2) - H(2)	1.0000	C(5) - C(6)	1.395(3)
C(5) - C(4)	1.509(3)	C(5) - H(5)	1.0000
C(4) - C(3)	1.527(3)	C(4) - H(4A)	0.9900
C(4) - H(4B)	0.9900	C(3) - H(3A)	0.9900
C(3) - H(3B)	0.9900	C(6) - C(7)	1.519(3)
C(6) - H(6)	1.0000	C(7) - C(8)	1.530(3)
C(7) - H(7A)	0.9900	C(7) - H(7B)	0.9900
C(8) - H(8A)	0.9900	C(8) - H(8B)	0.9900
C(21) - C(22)	1.391(3)	C(21) - C(26)	1.397(3)
C(15) - N	1.341(3)	C(15) - C(14)	1.370(3)
C(15) - H(15)	0.9500	C(14) - C(13)	1.380(3)
C(14) - H(14)	0.9500	C(13) - C(12)	1.380(3)
C(13) - H(13)	0.9500	C(12) - C(11)	1.396(3)
C(12) - H(12)	0.9500	C(11) - N	1.348(3)
C(11) - C	1.518(3)	C(22) - C(23)	1.400(3)
C(22) – C	1.536(3)	C(83) - C(84)	1.372(3)
C(83) - C(82)	1.389(3)	C(83) - H(83)	0.9500
C(23) - C(24)	1.379(3)	C(23) - H(23)	0.9500
C(84) - C(85)	1.380(3)	C(84) - H(84)	0.9500
C(24) - C(25)	1.389(3)	C(24) - H(24)	0.9500
C(85) - C(86)	1.387(3)	C(85) - H(85)	0.9500
C(25) - C(26)	1.377(3)	C(25) - H(25)	0.9500
C(86) - C(81)	1.401(3)	C(86) - H(86)	0.9500
C(26) - H(26)	0.9500	C(31) - C(32)	1.388(3)
C(31) - C(36)	1.394(3)	C(31) - P(1)	1.803(2)
C(32) - C(33)	1.400(3)	C(32) - C	1.548(3)
C(33) - C(34)	1.378(3)	C(33) - H(33)	0.9500
C(34) - C(35)	1.381(3)	C(34) - H(34)	0.9500
C(35) - C(36)	1.374(3)	C(35) - H(35)	0.9500
C(36)-H(36)	0.9500	C(54) - C(55)	1.375(3)
C(54) - C(53)	1.379(3)	C(54) - H(54)	0.9500
C(55) - C(56)	1.385(3)	C(55) - H(55)	0.9500
C(56) - C(51)	1.390(3)	C(56) - H(56)	0.9500
C(61) - C(66)	1.393(3)	C(61) - C(62)	1.396(3)
			Continued on next page

Table S5. Distances [Å] for $[(PC^{Py}P)Ir(COD)]$ (6).

atom – atom	distance	atom – atom	distance
C(62) – C(63)	1.383(3)	C(62) – H(62)	0.9500
C(63) - C(64)	1.385(3)	C(63) - H(63)	0.9500
C(64) - C(65)	1.376(3)	C(64) - H(64)	0.9500
C(65) - C(66)	1.389(3)	C(65) - H(65)	0.9500
C(66) - H(66)	0.9500	C(71) - C(72)	1.390(3)
C(71) - C(76)	1.397(3)	C(71) - P(1)	1.841(2)
C(72) - C(73)	1.388(3)	C(72) - H(72)	0.9500
C(73) - C(74)	1.384(3)	C(73) - H(73)	0.9500
C(74) - C(75)	1.376(4)	C(74) - H(74)	0.9500
C(75) - C(76)	1.384(3)	C(75) - H(75)	0.9500
C(76) - H(76)	0.9500	C(82) - C(81)	1.391(3)
C(82) - H(82)	0.9500	C(81) - P(1)	1.836(2)
C(53) - C(52)	1.383(3)	C(53) - H(53)	0.9500
C(52) - C(51)	1.394(3)	C(52) - H(52)	0.9500

Table S5. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(1) - Ir - C(2)	39.22(8)	C(1) - Ir - C(6)	78.92(8)
C(2) - Ir - C(6)	87.16(8)	C(1) - Ir - C(5)	94.00(8)
C(2) - Ir - C(5)	78.19(8)	C(6) - Ir - C(5)	36.53(8)
C(1)-Ir-C	90.06(8)	C(2) - Ir - C	94.20(8)
C(6) - Ir - C	160.83(8)	C(5) - Ir - C	161.90(8)
C(1) - Ir - P(1)	152.39(6)	C(2) - Ir - P(1)	114.46(6)
C(6) - Ir - P(1)	113.77(6)	C(5) - Ir - P(1)	85.23(6)
C-Ir-P(1)	83.06(5)	C(1) - Ir - P(2)	102.51(6)
C(2) - Ir - P(2)	141.68(6)	C(6) - Ir - P(2)	85.90(6)
C(5) - Ir - P(2)	114.95(6)	C - Ir - P(2)	81.20(5)
P(1) - Ir - P(2)	102.789(19)	C(2) - C(1) - C(8)	122.35(19)
C(2) - C(1) - Ir	71.00(11)	C(8) - C(1) - Ir	115.33(14)
C(2) - C(1) - H(1)	113.8	C(8) - C(1) - H(1)	113.8
Ir - C(1) - H(1)	113.8	C(21) - P(2) - C(61)	104.27(10)
C(21) - P(2) - C(51)	102.59(9)	C(61) - P(2) - C(51)	100.29(9)
C(21) - P(2) - Ir	103.28(7)	C(61) - P(2) - Ir	125.84(7)
C(51) - P(2) - Ir	117.73(6)	C(1) - C(2) - C(3)	121.28(19)
C(1) - C(2) - Ir	69.78(11)	C(3) - C(2) - Ir	116.80(14)
C(1) - C(2) - H(2)	114.0	C(3) - C(2) - H(2)	114.0
Ir - C(2) - H(2)	114.0	C(6) - C(5) - C(4)	123.9(2)
C(6) - C(5) - Ir	71.61(12)	C(4) - C(5) - Ir	112.73(14)
C(6) - C(5) - H(5)	113.8	C(4) - C(5) - H(5)	113.8
Ir - C(5) - H(5)	113.8	C(5) - C(4) - C(3)	112.53(18)
C(5) - C(4) - H(4A)	109.1	C(3) - C(4) - H(4A)	109.1
C(5) - C(4) - H(4B)	109.1	C(3) - C(4) - H(4B)	109.1
H(4A) - C(4) - H(4B)	107.8	C(2) - C(3) - C(4)	112.51(18)
C(2) - C(3) - H(3A)	109.1	C(4) - C(3) - H(3A)	109.1
C(2) - C(3) - H(3B)	109.1	C(4) - C(3) - H(3B)	109.1
H(3A) - C(3) - H(3B)	107.8	C(5) - C(6) - C(7)	123.2(2)
C(5) - C(6) - Ir	71.86(12)	C(7) - C(6) - Ir	113.60(15)
C(5) - C(6) - H(6)	113.8	C(7) - C(6) - H(6)	113.8
Ir - C(6) - H(6)	113.8	C(6) - C(7) - C(8)	113.80(18)
C(6) - C(7) - H(7A)	108.8	C(8) - C(7) - H(7A)	108.8
C(6) - C(7) - H(7B)	108.8	C(8) - C(7) - H(7B)	108.8
H(7A) - C(7) - H(7B)	107.7	C(1) - C(8) - C(7)	112.76(18)
C(1) - C(8) - H(8A)	109.0	C(7) - C(8) - H(8A)	109.0
C(1) - C(8) - H(8B)	109.0	C(7) - C(8) - H(8B)	109.0
H(8A) - C(8) - H(8B)	107.8	C(22) - C(21) - C(26)	121.17(19)
C(22) - C(21) - P(2)	115.45(15)	C(26) - C(21) - P(2)	123.30(16)
N - C(15) - C(14)	124.3(2)	N - C(15) - H(15)	117.8
C(14) - C(15) - H(15)	117.8	C(15) - C(14) - C(13)	117.4(2)
		Continue	d on next page

Table S6. Angles [°] for $[(PC^{Py}P)Ir(COD)]$ (6).

atom – atom – atom	angle	atom – atom – atom	angle
C(15) - C(14) - H(14)	121.3	C(13) - C(14) - H(14)	121.3
C(14) - C(13) - C(12)	119.9(2)	C(14) - C(13) - H(13)	120.1
C(12) - C(13) - H(13)	120.1	C(13) - C(12) - C(11)	119.4(2)
C(13) - C(12) - H(12)	120.3	C(11) - C(12) - H(12)	120.3
N - C(11) - C(12)	120.74(19)	N - C(11) - C	117.49(18)
C(12) - C(11) - C	121.74(18)	C(21) - C(22) - C(23)	117.19(18)
C(21) - C(22) - C	119.79(18)	C(23) - C(22) - C	122.76(18)
C(84) - C(83) - C(82)	120.7(2)	C(84) - C(83) - H(83)	119.6
C(82) - C(83) - H(83)	119.6	C(24) - C(23) - C(22)	121.6(2)
C(24) - C(23) - H(23)	119.2	C(22) - C(23) - H(23)	119.2
C(83) - C(84) - C(85)	119.7(2)	C(83) - C(84) - H(84)	120.2
C(85) - C(84) - H(84)	120.2	C(23) - C(24) - C(25)	120.5(2)
C(23) - C(24) - H(24)	119.8	C(25) - C(24) - H(24)	119.8
C(84) - C(85) - C(86)	120.2(2)	C(84) - C(85) - H(85)	119.9
C(86) - C(85) - H(85)	119.9	C(26) - C(25) - C(24)	118.9(2)
C(26) - C(25) - H(25)	120.5	C(24) - C(25) - H(25)	120.5
C(85) - C(86) - C(81)	120.7(2)	C(85) - C(86) - H(86)	119.6
C(81) - C(86) - H(86)	119.6	C(25) - C(26) - C(21)	120.6(2)
C(25) - C(26) - H(26)	119.7	C(21) - C(26) - H(26)	119.7
C(32) - C(31) - C(36)	121.09(19)	C(32) - C(31) - P(1)	115.83(15)
C(36) - C(31) - P(1)	123.08(16)	C(31) - C(32) - C(33)	117.09(19)
C(31) - C(32) - C	121.39(18)	C(33) - C(32) - C	121.19(18)
C(34) - C(33) - C(32)	121.4(2)	C(34) - C(33) - H(33)	119.3
C(32) - C(33) - H(33)	119.3	C(33) - C(34) - C(35)	120.7(2)
C(33) - C(34) - H(34)	119.6	C(35) - C(34) - H(34)	119.6
C(36) - C(35) - C(34)	118.8(2)	C(36) - C(35) - H(35)	120.6
C(34) - C(35) - H(35)	120.6	C(35) - C(36) - C(31)	120.7(2)
C(35) - C(36) - H(36)	119.6	C(31) - C(36) - H(36)	119.6
C(55) - C(54) - C(53)	119.3(2)	C(55) - C(54) - H(54)	120.4
C(53) - C(54) - H(54)	120.4	C(54) - C(55) - C(56)	120.4(2)
C(54) - C(55) - H(55)	119.8	C(56) - C(55) - H(55)	119.8
C(55) - C(56) - C(51)	121.4(2)	C(55) - C(56) - H(56)	119.3
C(51) - C(56) - H(56)	119.3	C(66) - C(61) - C(62)	118.1(2)
C(66) - C(61) - P(2)	121.72(17)	C(62) - C(61) - P(2)	120.14(16)
C(63) - C(62) - C(61)	120.8(2)	C(63) - C(62) - H(62)	119.6
C(61) - C(62) - H(62)	119.6	C(62) - C(63) - C(64)	120.1(2)
C(62) - C(63) - H(63)	119.9	C(64) - C(63) - H(63)	119.9
C(65) - C(64) - C(63)	119.7(2)	C(65) - C(64) - H(64)	120.1
C(63) - C(64) - H(64)	120.1	C(64) - C(65) - C(66)	120.2(2)
C(64) - C(65) - H(65)	119.9	C(66) - C(65) - H(65)	119.9
C(65) - C(66) - C(61)	120.7(2)	C(65) - C(66) - H(66)	119.6
C(61) - C(66) - H(66)	119.6	C(72) - C(71) - C(76)	118.5(2)
		Continu	ed on next page

Table S6. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(72) - C(71) - P(1)	118.25(16)	C(76) - C(71) - P(1)	123.13(17)
C(73) - C(72) - C(71)	120.9(2)	C(73) - C(72) - H(72)	119.5
C(71) - C(72) - H(72)	119.5	C(74) - C(73) - C(72)	119.6(2)
C(74) - C(73) - H(73)	120.2	C(72) - C(73) - H(73)	120.2
C(75) - C(74) - C(73)	120.1(2)	C(75) - C(74) - H(74)	119.9
C(73) - C(74) - H(74)	119.9	C(74) - C(75) - C(76)	120.4(2)
C(74) - C(75) - H(75)	119.8	C(76) - C(75) - H(75)	119.8
C(75) - C(76) - C(71)	120.4(2)	C(75) - C(76) - H(76)	119.8
C(71) - C(76) - H(76)	119.8	C(15) - N - C(11)	118.27(19)
C(83) - C(82) - C(81)	120.5(2)	C(83) - C(82) - H(82)	119.7
C(81) - C(82) - H(82)	119.7	C(82) - C(81) - C(86)	118.1(2)
C(82) - C(81) - P(1)	122.07(17)	C(86) - C(81) - P(1)	119.70(16)
C(11) - C - C(22)	111.53(16)	C(11) - C - C(32)	106.62(16)
C(22) - C - C(32)	106.42(16)	C(11)-C-Ir	110.00(13)
C(22) - C - Ir	110.36(13)	C(32)-C-Ir	111.82(13)
C(54) - C(53) - C(52)	120.4(2)	C(54) - C(53) - H(53)	119.8
C(52) - C(53) - H(53)	119.8	C(53) - C(52) - C(51)	121.3(2)
C(53) - C(52) - H(52)	119.3	C(51) - C(52) - H(52)	119.3
C(56) - C(51) - C(52)	117.23(19)	C(56) - C(51) - P(2)	123.00(15)
C(52) - C(51) - P(2)	119.67(16)	C(31) - P(1) - C(81)	102.63(10)
C(31) - P(1) - C(71)	102.86(9)	C(81) - P(1) - C(71)	101.40(9)
C(31) - P(1) - Ir	105.20(7)	C(81) - P(1) - Ir	121.56(7)
C(71) - P(1) - Ir	120.44(7)		

Table S6. – continued from previous page

3.2 Crystal data for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9)

Figure S49. Thermal-ellipsoid representation of $[(PC^{Py}P)IrH(C_4H_7O)]$ (9) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	pc25	
Empirical formula:	$C_{46}H_{40}IrNOP_2$	
Formula weight:	876.93	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	C2/c	
Unit cell dimensions:	a = 42.2630(17) Å	$\alpha = 90^{\circ}$
	b = 9.1164(4) Å	$\beta = 92.105(3)^{\circ}$
	c = 18.8750(7) Å	$\gamma = 90^{\circ}$
Volume:	7267.4(5) Å ³	
Z:	8	
Density (calculated):	1.603 g⋅cm ⁻³	
Absorption coefficient (μ):	3.801 mm^{-1}	
F(000):	3504	
Crystal size:	$0.11 \times 0.09 \times 0.08 \text{ mm}^3$	
θ range for data collection:	0.96 to 25.00°	
Index ranges:	$-50 \le h \le 50, -7 \le k \le 10, -22 \le l \le 22$	
Reflections collected:	55245	
Independent reflections:	6399 [$R_{int} = 0.0551$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7457 and 0.6140	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	6399 / 0 / 453	
Goodness-of-fit on F ² :	1.052	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0296, wR_2 = 0.0608$	
R indices (all data):	$R_1 = 0.0393, wR_2 = 0.0635$	
Largest diff. peak and hole:	1.100 and $-0.612 \text{ e}^{-} \text{Å}^{-3}$	

Table S7. Crystal data and structure refinement for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9).

_

Table S8. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for [(PC^{Py}P)IrH(C₄H₇O)] (9). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

atom	X	у	Z	U(eq)
Ir	0.37122(1)	0.68136(2)	0.94636(1)	0.022(1)
P(1)	0.33075(2)	0.80016(13)	0.89185(6)	0.025(1)
P(2)	0.42025(2)	0.60135(13)	0.98088(6)	0.023(1)
С	0.39490(9)	0.7132(5)	0.8462(2)	0.024(1)
C(11)	0.37608(10)	0.8015(5)	0.7916(2)	0.029(1)
O(8)	0.32064(19)	0.7021(10)	1.0526(4)	0.044(1)
C(83)	0.3060(3)	0.6315(15)	1.1113(7)	0.044(1)
C(84)	0.3329(3)	0.5588(18)	1.1530(7)	0.044(1)
C(82)	0.3619(3)	0.5895(16)	1.1074(6)	0.044(1)
O(9)	0.35668(13)	0.4943(8)	1.0748(3)	0.044(1)
C(92)	0.3367(2)	0.4794(12)	1.1342(5)	0.044(1)
C(93)	0.3181(3)	0.6184(12)	1.1409(6)	0.044(1)
C(94)	0.3319(2)	0.7125(12)	1.0836(5)	0.044(1)
C(12)	0.34601(10)	0.8548(5)	0.8065(2)	0.027(1)
C(13)	0.32836(10)	0.9350(5)	0.7561(2)	0.035(1)
C(14)	0.33976(12)	0.9624(6)	0.6903(3)	0.044(1)
C(15)	0.36869(11)	0.9016(7)	0.6731(2)	0.046(1)
C(16)	0.38607(11)	0.8221(6)	0.7224(2)	0.039(1)
C(21)	0.42974(9)	0.7524(5)	0.8582(2)	0.026(1)
C(26)	0.44713(10)	0.8477(6)	0.8171(2)	0.038(1)
C(25)	0.47882(11)	0.8789(6)	0.8342(3)	0.042(1)
C(24)	0.49406(10)	0.8141(6)	0.8905(3)	0.038(1)
C(23)	0.47738(10)	0.7229(5)	0.9336(3)	0.031(1)
C(22)	0.44537(9)	0.6949(5)	0.9187(2)	0.024(1)
C(31)	0.38925(9)	0.5525(5)	0.8285(2)	0.029(1)
C(32)	0.40159(12)	0.4626(7)	0.7780(3)	0.049(1)
C(33)	0.39121(16)	0.3196(7)	0.7732(4)	0.070(2)
C(34)	0.36965(15)	0.2682(7)	0.8175(3)	0.062(2)
C(35)	0.35798(12)	0.3608(6)	0.8674(3)	0.043(1)
C(41)	0.31342(9)	0.9668(5)	0.9277(2)	0.027(1)
C(42)	0.28533(10)	1.0246(6)	0.8989(2)	0.036(1)
C(43)	0.27420(11)	1.1563(6)	0.9227(3)	0.041(1)
C(44)	0.29027(11)	1.2318(6)	0.9758(3)	0.041(1)
C(45)	0.31743(11)	1.1725(5)	1.0062(3)	0.037(1)
C(46)	0.32882(10)	1.0412(5)	0.9826(2)	0.031(1)
Ν	0.36801(8)	0.4988(4)	0.87330(19)	0.028(1)
C(51)	0.29615(9)	0.6882(5)	0.8685(2)	0.029(1)
C(52)	0.27337(10)	0.6652(5)	0.9181(2)	0.033(1)
C(53)	0.24873(10)	0.5686(6)	0.9048(3)	0.039(1)
			Continue	ed on next page

atom	X	y y	X	U(eq)
C(54)	0.24693(11)	0.4911(6)	0.8427(3)	0.042(1)
C(55)	0.26934(11)	0.5112(6)	0.7926(3)	0.047(1)
C(56)	0.29389(11)	0.6088(6)	0.8053(3)	0.041(1)
C(61)	0.43820(10)	0.6498(5)	1.0669(2)	0.030(1)
C(62)	0.43475(12)	0.7914(6)	1.0910(3)	0.040(1)
C(63)	0.44795(13)	0.8356(7)	1.1554(3)	0.056(2)
C(64)	0.46467(12)	0.7366(9)	1.1965(3)	0.058(2)
C(65)	0.46874(11)	0.5961(8)	1.1731(3)	0.053(2)
C(66)	0.45577(10)	0.5522(6)	1.1085(2)	0.039(1)
C(71)	0.42967(9)	0.4068(5)	0.9713(2)	0.028(1)
C(72)	0.41017(11)	0.3034(5)	1.0010(3)	0.042(1)
C(73)	0.41620(12)	0.1557(5)	0.9940(3)	0.047(1)
C(74)	0.44171(11)	0.1089(6)	0.9572(3)	0.039(1)
C(75)	0.46117(11)	0.2106(5)	0.9276(3)	0.039(1)
C(76)	0.45507(10)	0.3582(5)	0.9340(3)	0.033(1)
C(81)	0.34439(12)	0.6066(6)	1.0343(3)	0.044(1)
Н	0.3774(11)	0.795(6)	0.978(3)	0.051(15)
H(83A)	0.2903	0.5577	1.0942	0.053
H(83B)	0.2952	0.7044	1.1409	0.053
H(84A)	0.3291	0.4521	1.1579	0.053
H(84B)	0.3357	0.6027	1.2008	0.053
H(82A)	0.3731	0.6804	1.1222	0.053
H(82B)	0.3769	0.5062	1.1081	0.053
H(92A)	0.3498	0.4620	1.1780	0.053
H(92B)	0.3222	0.3950	1.1269	0.053
H(93A)	0.3215	0.6631	1.1884	0.053
H(93B)	0.2952	0.6012	1.1318	0.053
H(94A)	0.3154	0.7744	1.0601	0.053
H(94B)	0.3490	0.7765	1.1035	0.053
H(13)	0.3081	0.9712	0.7675	0.042
H(14)	0.3281	1.0216	0.6571	0.053
H(15)	0.3764	0.9152	0.6270	0.055
H(16)	0.4055	0.7796	0.7092	0.047
H(26)	0.4372	0.8924	0.7766	0.045
H(25)	0.4899	0.9466	0.8060	0.050
H(24)	0.5160	0.8315	0.9001	0.046
H(23)	0.4877	0.6786	0.9737	0.037
H(32)	0.4170	0.4984	0.7470	0.059
H(33)	0.3994	0.2567	0.7382	0.084
H(34)	0.3626	0.1694	0.8143	0.074
H(35)	0.3424	0.3259	0.8983	0.052
H(42)	0.2738	0.9728	0.8627	0.043
			Con	tinued on next page

Table S8. – continued from previous page

	r			
atom	X	у	X	U(eq)
H(43)	0.2552	1.1958	0.9023	0.050
H(44)	0.2827	1.3241	0.9913	0.049
H(45)	0.3284	1.2227	1.0437	0.044
H(46)	0.3475	1.0009	1.0042	0.038
H(52)	0.2747	0.7165	0.9619	0.040
H(53)	0.2330	0.5558	0.9389	0.047
H(54)	0.2301	0.4233	0.8341	0.050
H(55)	0.2679	0.4580	0.7493	0.056
H(56)	0.3094	0.6220	0.7706	0.049
H(62)	0.4230	0.8600	1.0627	0.049
H(63)	0.4455	0.9338	1.1711	0.067
H(64)	0.4734	0.7655	1.2415	0.070
H(65)	0.4806	0.5283	1.2016	0.063
H(66)	0.4589	0.4547	1.0925	0.047
H(72)	0.3924	0.3346	1.0265	0.050
H(73)	0.4026	0.0860	1.0148	0.057
H(74)	0.4459	0.0071	0.9523	0.047
H(75)	0.4790	0.1789	0.9024	0.047
H(76)	0.4685	0.4273	0.9124	0.040
H(81)	0.3250	0.5628	1.0111	0.053

Table S8. – continued from previous page

$\frac{1}{2} = \frac{1}{2} = \frac{1}$						
atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ir	0.0147(1)	0.0310(1)	0.0206(1)	-0.0004(1)	0.0036(1)	0.0042(1)
P(1)	0.0154(5)	0.0358(7)	0.0233(6)	-0.0012(5)	0.0012(4)	0.0053(5)
P(2)	0.0160(5)	0.0279(7)	0.0264(6)	0.0003(5)	0.0012(4)	0.0038(5)
С	0.017(2)	0.035(3)	0.021(2)	-0.0019(19)	0.0062(17)	0.0006(18)
C(11)	0.022(2)	0.041(3)	0.024(2)	-0.003(2)	0.0024(18)	-0.001(2)
O(8)	0.0363(17)	0.057(2)	0.0393(19)	0.0124(15)	0.0124(13)	0.0112(14)
C(83)	0.0363(17)	0.057(2)	0.0393(19)	0.0124(15)	0.0124(13)	0.0112(14)
C(84)	0.0363(17)	0.057(2)	0.0393(19)	0.0124(15)	0.0124(13)	0.0112(14)
C(82)	0.0363(17)	0.057(2)	0.0393(19)	0.0124(15)	0.0124(13)	0.0112(14)
O(9)	0.0363(17)	0.057(2)	0.0393(19)	0.0124(15)	0.0124(13)	0.0112(14)
C(92)	0.0363(17)	0.057(2)	0.0393(19)	0.0124(15)	0.0124(13)	0.0112(14)
C(93)	0.0363(17)	0.057(2)	0.0393(19)	0.0124(15)	0.0124(13)	0.0112(14)
C(94)	0.0363(17)	0.057(2)	0.0393(19)	0.0124(15)	0.0124(13)	0.0112(14)
C(12)	0.021(2)	0.038(3)	0.023(2)	0.000(2)	-0.0010(18)	-0.0007(19)
C(13)	0.026(2)	0.046(3)	0.031(3)	0.002(2)	-0.005(2)	0.003(2)
C(14)	0.040(3)	0.060(4)	0.030(3)	0.011(3)	-0.011(2)	-0.003(3)
C(15)	0.035(3)	0.082(4)	0.020(2)	0.007(3)	0.001(2)	-0.007(3)
C(16)	0.027(2)	0.064(4)	0.027(2)	0.002(3)	0.0039(19)	0.001(2)
C(21)	0.018(2)	0.035(3)	0.025(2)	-0.006(2)	0.0068(18)	0.0017(19)
C(26)	0.026(2)	0.056(4)	0.031(3)	0.011(2)	0.004(2)	-0.003(2)
C(25)	0.026(2)	0.056(3)	0.043(3)	0.011(3)	0.011(2)	-0.009(2)
C(24)	0.018(2)	0.048(3)	0.048(3)	0.006(3)	0.005(2)	-0.001(2)
C(23)	0.023(2)	0.032(3)	0.038(3)	-0.003(2)	-0.001(2)	0.003(2)
C(22)	0.019(2)	0.024(2)	0.029(2)	-0.003(2)	0.0080(17)	0.0045(18)
C(31)	0.020(2)	0.040(3)	0.027(2)	-0.008(2)	0.0008(18)	0.002(2)
C(32)	0.046(3)	0.058(4)	0.046(3)	-0.016(3)	0.017(3)	-0.002(3)
C(33)	0.083(5)	0.059(4)	0.069(4)	-0.040(4)	0.021(4)	0.002(4)
C(34)	0.067(4)	0.041(4)	0.078(5)	-0.023(3)	0.003(4)	-0.007(3)
C(35)	0.036(3)	0.039(3)	0.055(3)	-0.002(3)	0.001(2)	-0.009(2)
C(41)	0.023(2)	0.031(3)	0.029(2)	0.002(2)	0.0058(18)	0.009(2)
C(42)	0.026(2)	0.048(3)	0.034(3)	-0.002(2)	0.001(2)	0.009(2)
C(43)	0.026(2)	0.047(3)	0.051(3)	0.011(3)	0.003(2)	0.015(2)
C(44)	0.034(3)	0.036(3)	0.053(3)	0.001(3)	0.012(2)	0.012(2)
C(45)	0.034(3)	0.038(3)	0.039(3)	-0.004(2)	0.011(2)	0.003(2)
C(46)	0.019(2)	0.039(3)	0.036(3)	-0.001(2)	0.0032(19)	0.003(2)
Ν	0.0225(19)	0.034(2)	0.028(2)	-0.0049(17)	0.0013(15)	-0.0008(17)
C(51)	0.016(2)	0.038(3)	0.032(2)	0.001(2)	-0.0015(18)	0.005(2)
C(52)	0.026(2)	0.042(3)	0.032(3)	0.001(2)	0.0026(19)	0.005(2)
C(53)	0.022(2)	0.048(3)	0.048(3)	0.002(3)	0.005(2)	0.001(2)
C(54)	0.024(2)	0.049(3)	0.051(3)	0.000(3)	-0.009(2)	-0.004(2)
					Continue	d on next page

Table S9. Anisotropic displacement parameters (Å²) for $[(PC^{Py}P)IrH(C_4H_7O)]$ (**9**). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^{*b*}U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(55)	0.036(3)	0.067(4)	0.036(3)	-0.017(3)	-0.008(2)	-0.006(3)
C(56)	0.028(3)	0.063(4)	0.033(3)	-0.012(3)	0.001(2)	-0.005(2)
C(61)	0.019(2)	0.042(3)	0.030(2)	0.004(2)	0.0007(18)	-0.003(2)
C(62)	0.043(3)	0.048(3)	0.031(3)	-0.003(2)	-0.001(2)	0.001(2)
C(63)	0.046(3)	0.078(5)	0.044(3)	-0.019(3)	0.000(3)	-0.009(3)
C(64)	0.034(3)	0.111(6)	0.030(3)	-0.007(3)	-0.006(2)	-0.006(3)
C(65)	0.024(3)	0.096(5)	0.037(3)	0.016(3)	-0.007(2)	0.007(3)
C(66)	0.023(2)	0.057(3)	0.038(3)	0.012(3)	0.000(2)	0.005(2)
C(71)	0.018(2)	0.031(3)	0.035(3)	0.001(2)	-0.0024(18)	0.0043(19)
C(72)	0.026(2)	0.033(3)	0.069(4)	0.008(3)	0.015(2)	0.003(2)
C(73)	0.034(3)	0.029(3)	0.079(4)	0.012(3)	0.012(3)	0.000(2)
C(74)	0.033(3)	0.031(3)	0.054(3)	0.006(3)	-0.002(2)	0.006(2)
C(75)	0.031(3)	0.036(3)	0.051(3)	-0.002(2)	0.005(2)	0.011(2)
C(76)	0.028(2)	0.030(3)	0.042(3)	0.002(2)	0.005(2)	0.003(2)
C(81)	0.0363(17)	0.057(2)	0.0393(19)	0.0124(15)	0.0124(13)	0.0112(14)

Table S9. – continued from previous page

atom – atom	distance	atom – atom	distance
Ir-C(81)	2.155(5)	Ir-N	2.163(4)
Ir-C	2.191(4)	Ir - P(1)	2.2421(11)
Ir - P(2)	2.2696(10)	Ir-H	1.22(5)
P(1) - C(51)	1.824(4)	P(1) - C(12)	1.826(4)
P(1) - C(41)	1.827(4)	P(2) - C(61)	1.821(5)
P(2) - C(22)	1.823(4)	P(2) - C(71)	1.828(5)
C - C(11)	1.511(6)	C - C(31)	1.520(6)
C-C(21)	1.524(6)	C(11) - C(12)	1.399(6)
C(11) - C(16)	1.400(6)	O(8) - C(81)	1.382(9)
O(8) – C(83)	1.442(14)	C(83) - C(84)	1.511(17)
C(83) - H(83A)	0.9900	C(83) - H(83B)	0.9900
C(84) - C(82)	1.549(15)	C(84) - H(84A)	0.9900
C(84) - H(84B)	0.9900	C(82) - C(81)	1.547(13)
C(82) - H(82A)	0.9900	C(82) - H(82B)	0.9900
O(9)-C(81)	1.368(7)	O(9) - C(92)	1.433(10)
C(92) - C(93)	1.500(14)	C(92) - H(92A)	0.9900
C(92) - H(92B)	0.9900	C(93) - C(94)	1.515(13)
C(93)-H(93A)	0.9900	C(93) - H(93B)	0.9900
C(94) - C(81)	1.453(11)	C(94) - H(94A)	0.9900
C(94) - H(94B)	0.9900	C(12) - C(13)	1.394(6)
C(13) - C(14)	1.372(6)	C(13) - H(13)	0.9500
C(14) - C(15)	1.392(7)	C(14) - H(14)	0.9500
C(15) - C(16)	1.371(7)	C(15) - H(15)	0.9500
C(16) - H(16)	0.9500	C(21) - C(26)	1.392(6)
C(21) - C(22)	1.400(6)	C(26) - C(25)	1.396(6)
C(26) - H(26)	0.9500	C(25) - C(24)	1.357(7)
C(25) - H(25)	0.9500	C(24) - C(23)	1.375(6)
C(24) - H(24)	0.9500	C(23) - C(22)	1.395(6)
C(23) - H(23)	0.9500	C(31) - N	1.348(5)
C(31) - C(32)	1.373(6)	C(32) - C(33)	1.378(8)
C(32) - H(32)	0.9500	C(33) - C(34)	1.343(9)
C(33) - H(33)	0.9500	C(34) - C(35)	1.370(8)
C(34) - H(34)	0.9500	C(35) - N	1.330(6)
C(35) - H(35)	0.9500	C(41) - C(46)	1.380(6)
C(41) - C(42)	1.391(6)	C(42) - C(43)	1.371(7)
C(42) - H(42)	0.9500	C(43) - C(44)	1.374(7)
C(43) - H(43)	0.9500	C(44) - C(45)	1.376(7)
C(44) - H(44)	0.9500	C(45) - C(46)	1.370(6)
C(45) - H(45)	0.9500	C(46) - H(46)	0.9500
C(51) - C(52)	1.384(6)	C(51) - C(56)	1.396(6)
C(52) - C(53)	1.380(6)	C(52) - H(52)	0.9500
		С	ontinued on next page

Table S10. Distances [Å] for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9).
atom – atom	distance	atom – atom	distance
C(53)-C(54)	1.368(7)	C(53)-H(53)	0.9500
C(54) - C(55)	1.375(7)	C(54) - H(54)	0.9500
C(55) - C(56)	1.381(7)	C(55) - H(55)	0.9500
C(56) - H(56)	0.9500	C(61) - C(62)	1.379(7)
C(61) - C(66)	1.385(6)	C(62) - C(63)	1.378(7)
C(62) - H(62)	0.9500	C(63) - C(64)	1.370(9)
C(63) - H(63)	0.9500	C(64) - C(65)	1.368(9)
C(64) - H(64)	0.9500	C(65) - C(66)	1.377(7)
C(65) - H(65)	0.9500	C(66) - H(66)	0.9500
C(71) - C(76)	1.379(6)	C(71) - C(72)	1.384(6)
C(72) - C(73)	1.377(7)	C(72) - H(72)	0.9500
C(73) - C(74)	1.372(7)	C(73) - H(73)	0.9500
C(74) - C(75)	1.373(7)	C(74) - H(74)	0.9500
C(75) - C(76)	1.376(7)	C(75) - H(75)	0.9500
C(76) - H(76)	0.9500	C(81) – H(81)	1.0000

Table S10. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(81) - Ir - N	103.03(19)	C(81)-Ir-C	167.6(2)
N - Ir - C	64.64(15)	C(81) - Ir - P(1)	95.29(14)
N-Ir-P(1)	92.88(10)	C-Ir-P(1)	84.54(11)
C(81) - Ir - P(2)	100.24(14)	N-Ir-P(2)	88.33(10)
C - Ir - P(2)	81.32(11)	P(1) - Ir - P(2)	163.73(4)
C(81) - Ir - H	90(2)	N-Ir-H	167(2)
C-Ir-H	103(2)	P(1)-Ir-H	88(2)
P(2) - Ir - H	87(2)	C(51) - P(1) - C(12)	104.2(2)
C(51) - P(1) - C(41)	103.1(2)	C(12) - P(1) - C(41)	105.0(2)
C(51) - P(1) - Ir	115.60(15)	C(12) - P(1) - Ir	104.38(14)
C(41) - P(1) - Ir	122.75(14)	C(61) - P(2) - C(22)	103.1(2)
C(61) - P(2) - C(71)	103.8(2)	C(22) - P(2) - C(71)	104.84(19)
C(61) - P(2) - Ir	121.61(15)	C(22) - P(2) - Ir	102.24(14)
C(71) - P(2) - Ir	118.91(14)	C(11) - C - C(31)	106.8(3)
C(11) - C - C(21)	117.3(4)	C(31) - C - C(21)	113.7(3)
C(11)-C-Ir	114.4(3)	C(31)-C-Ir	89.4(2)
C(21)-C-Ir	111.9(3)	C(12) - C(11) - C(16)	116.7(4)
C(12) - C(11) - C	120.5(4)	C(16) - C(11) - C	122.6(4)
C(81) - O(8) - C(83)	104.3(8)	O(8) - C(83) - C(84)	105.0(9)
O(8) - C(83) - H(83A)	110.7	C(84) - C(83) - H(83A)	110.7
O(8) - C(83) - H(83B)	110.7	C(84) - C(83) - H(83B)	110.7
H(83A) - C(83) - H(83B)	108.8	C(83) - C(84) - C(82)	103.1(9)
C(83) - C(84) - H(84A)	111.1	C(82) - C(84) - H(84A)	111.1
C(83) - C(84) - H(84B)	111.1	C(82) - C(84) - H(84B)	111.1
H(84A) - C(84) - H(84B)	109.1	C(81) - C(82) - C(84)	98.8(8)
C(81) - C(82) - H(82A)	112.0	C(84) - C(82) - H(82A)	112.0
C(81) - C(82) - H(82B)	112.0	C(84) - C(82) - H(82B)	112.0
H(82A) - C(82) - H(82B)	109.7	C(81) - O(9) - C(92)	106.6(6)
O(9) - C(92) - C(93)	108.2(7)	O(9) - C(92) - H(92A)	110.1
C(93) - C(92) - H(92A)	110.1	O(9) - C(92) - H(92B)	110.1
C(93) - C(92) - H(92B)	110.1	H(92A) - C(92) - H(92B)	108.4
C(92) - C(93) - C(94)	101.6(7)	C(92) - C(93) - H(93A)	111.5
C(94) - C(93) - H(93A)	111.5	C(92) - C(93) - H(93B)	111.5
C(94) - C(93) - H(93B)	111.5	H(93A) - C(93) - H(93B)	109.3
C(81) - C(94) - C(93)	103.8(8)	C(81) - C(94) - H(94A)	111.0
C(93) - C(94) - H(94A)	111.0	C(81) - C(94) - H(94B)	111.0
C(93) - C(94) - H(94B)	111.0	H(94A) - C(94) - H(94B)	109.0
C(13) - C(12) - C(11)	120.8(4)	C(13) - C(12) - P(1)	123.2(3)
C(11) - C(12) - P(1)	115.9(3)	C(14) - C(13) - C(12)	121.1(4)
C(14) - C(13) - H(13)	119.4	C(12) - C(13) - H(13)	119.4
C(13) - C(14) - C(15)	118.7(5)	C(13) - C(14) - H(14)	120.7
		Continue	ed on next page

Table S11. Angles [°] for $[(PC^{Py}P)IrH(C_4H_7O)]$ (9).

atom – atom – atom	angle	atom – atom – atom	angle
C(15) - C(14) - H(14)	120.7	C(16) - C(15) - C(14)	120.4(4)
C(16) - C(15) - H(15)	119.8	C(14) - C(15) - H(15)	119.8
C(15) - C(16) - C(11)	122.1(4)	C(15) - C(16) - H(16)	118.9
C(11) - C(16) - H(16)	118.9	C(26) - C(21) - C(22)	116.4(4)
C(26) - C(21) - C	126.2(4)	C(22) - C(21) - C	117.3(4)
C(21) - C(26) - C(25)	121.3(4)	C(21) - C(26) - H(26)	119.3
C(25) - C(26) - H(26)	119.3	C(24) - C(25) - C(26)	121.1(5)
C(24) - C(25) - H(25)	119.5	C(26) - C(25) - H(25)	119.5
C(25) - C(24) - C(23)	119.1(4)	C(25) - C(24) - H(24)	120.4
C(23) - C(24) - H(24)	120.4	C(24) - C(23) - C(22)	120.4(4)
C(24) - C(23) - H(23)	119.8	C(22) - C(23) - H(23)	119.8
C(23) - C(22) - C(21)	121.4(4)	C(23) - C(22) - P(2)	122.7(3)
C(21) - C(22) - P(2)	115.6(3)	N-C(31)-C(32)	119.8(5)
N - C(31) - C	108.4(4)	C(32) - C(31) - C	131.8(4)
C(31) - C(32) - C(33)	118.8(5)	C(31) - C(32) - H(32)	120.6
C(33) - C(32) - H(32)	120.6	C(34) - C(33) - C(32)	120.7(6)
C(34) - C(33) - H(33)	119.6	C(32) - C(33) - H(33)	119.6
C(33) - C(34) - C(35)	118.8(6)	C(33) - C(34) - H(34)	120.6
C(35) - C(34) - H(34)	120.6	N-C(35)-C(34)	121.2(5)
N - C(35) - H(35)	119.4	C(34) - C(35) - H(35)	119.4
C(46) - C(41) - C(42)	118.6(4)	C(46) - C(41) - P(1)	120.1(3)
C(42) - C(41) - P(1)	121.2(4)	C(43) - C(42) - C(41)	120.1(5)
C(43) - C(42) - H(42)	119.9	C(41) - C(42) - H(42)	119.9
C(42) - C(43) - C(44)	120.7(5)	C(42) - C(43) - H(43)	119.6
C(44) - C(43) - H(43)	119.6	C(43) - C(44) - C(45)	119.3(5)
C(43) - C(44) - H(44)	120.4	C(45) - C(44) - H(44)	120.4
C(46) - C(45) - C(44)	120.4(5)	C(46) - C(45) - H(45)	119.8
C(44) - C(45) - H(45)	119.8	C(45) - C(46) - C(41)	120.8(4)
C(45) - C(46) - H(46)	119.6	C(41) - C(46) - H(46)	119.6
C(35) - N - C(31)	120.6(4)	C(35) - N - Ir	142.5(3)
C(31) - N - Ir	95.3(3)	C(52) - C(51) - C(56)	118.2(4)
C(52) - C(51) - P(1)	119.5(4)	C(56) - C(51) - P(1)	121.7(3)
C(53) - C(52) - C(51)	120.8(5)	C(53) - C(52) - H(52)	119.6
C(51) - C(52) - H(52)	119.6	C(54) - C(53) - C(52)	120.2(4)
C(54) - C(53) - H(53)	119.9	C(52) - C(53) - H(53)	119.9
C(53) - C(54) - C(55)	120.2(5)	C(53) - C(54) - H(54)	119.9
C(55) - C(54) - H(54)	119.9	C(54) - C(55) - C(56)	119.9(5)
C(54) - C(55) - H(55)	120.0	C(56) - C(55) - H(55)	120.0
C(55) - C(56) - C(51)	120.6(4)	C(55) - C(56) - H(56)	119.7
C(51) - C(56) - H(56)	119.7	C(62) - C(61) - C(66)	118.4(5)
C(62) - C(61) - P(2)	118.4(4)	C(66) - C(61) - P(2)	123.2(4)
C(63) - C(62) - C(61)	121.3(5)	C(63) - C(62) - H(62)	119.3
		Continue	ed on next page

Table S11. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(61)-C(62)-H(62)	119.3	C(64) - C(63) - C(62)	119.4(6)
C(64) - C(63) - H(63)	120.3	C(62) - C(63) - H(63)	120.3
C(65) - C(64) - C(63)	120.1(5)	C(65) - C(64) - H(64)	119.9
C(63) - C(64) - H(64)	119.9	C(64) - C(65) - C(66)	120.5(5)
C(64) - C(65) - H(65)	119.7	C(66) - C(65) - H(65)	119.7
C(65) - C(66) - C(61)	120.2(5)	C(65) - C(66) - H(66)	119.9
C(61) - C(66) - H(66)	119.9	C(76) - C(71) - C(72)	118.3(4)
C(76) - C(71) - P(2)	122.6(4)	C(72) - C(71) - P(2)	119.1(3)
C(73) - C(72) - C(71)	120.8(4)	C(73) - C(72) - H(72)	119.6
C(71) - C(72) - H(72)	119.6	C(74) - C(73) - C(72)	120.3(5)
C(74) - C(73) - H(73)	119.9	C(72) - C(73) - H(73)	119.9
C(73) - C(74) - C(75)	119.4(5)	C(73) - C(74) - H(74)	120.3
C(75) - C(74) - H(74)	120.3	C(74) - C(75) - C(76)	120.5(5)
C(74) - C(75) - H(75)	119.7	C(76) - C(75) - H(75)	119.7
C(75) - C(76) - C(71)	120.7(5)	C(75) - C(76) - H(76)	119.6
C(71) - C(76) - H(76)	119.6	O(9) - C(81) - O(8)	126.6(5)
O(9) - C(81) - C(94)	106.2(6)	O(8) - C(81) - C(82)	99.7(6)
C(94) - C(81) - C(82)	70.7(7)	O(9) - C(81) - Ir	117.8(4)
O(8) - C(81) - Ir	113.6(5)	C(94) - C(81) - Ir	119.8(5)
C(82) - C(81) - Ir	118.1(5)	O(9) - C(81) - H(81)	103.6
O(8) - C(81) - H(81)	76.6	C(94) - C(81) - H(81)	103.6
C(82) - C(81) - H(81)	135.1	Ir - C(81) - H(81)	103.6

Table S11. – continued from previous page

3.3 Crystal data for [(PC^{Py}P)IrH(CH₂O^tBu] (10)

Figure S50. Thermal-ellipsoid representation of $[(PC^{Py}P)IrH(CH_2O'Bu] (10)$ at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	pc13	
Empirical formula:	$C_{47}H_{44}IrNOP_2$	
Formula weight:	892.97	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/c$	
Unit cell dimensions:	a = 17.280(3) Å	$\alpha = 90^{\circ}$
	b = 14.146(2) Å	$\beta = 104.829(2)^{\circ}$
	c = 18.792(3) Å	$\gamma = 90^{\circ}$
Volume:	4440.5(11) $Å^3$	
Z:	4	
Density (calculated):	$1.336 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	3.111 mm^{-1}	
F(000):	1792	
Crystal size:	$0.09 \times 0.08 \times 0.08 \text{ mm}^3$	
θ range for data collection:	1.22 to 25.00°	
Index ranges:	$-20 \le h \le 20, -16 \le k \le 16, -22 \le l \le 22$	
Reflections collected:	66672	
Independent reflections:	7823 [$R_{int} = 0.0705$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7455 and 0.6604	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	7823 / 0 / 476	
Goodness-of-fit on F ² :	1.047	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0315, wR_2 = 0.0676$	
R indices (all data):	$R_1 = 0.0493, wR_2 = 0.0723$	
Largest diff. peak and hole:	0.997 and $-0.515 \text{ e}^{-1} \text{Å}^{-3}$	

Table S12. Crystal data and structure refinement for [(PC^{Py}P)IrH(CH₂O'Bu] (10).

_

Table S13. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for $[(PC^{Py}P)IrH(CH_2O'Bu]$ (10). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

atom	X	у	Z	U(eq)
Ir	0.69522(1)	-0.00712(1)	0.85598(1)	0.017(1)
P(2)	0.75925(7)	-0.14313(8)	0.90053(7)	0.023(1)
0	0.68995(18)	-0.0466(2)	0.70329(15)	0.025(1)
C(4)	0.6344(3)	-0.0552(3)	0.7493(2)	0.028(1)
Ν	0.8084(2)	0.0503(2)	0.84134(19)	0.020(1)
С	0.7768(3)	0.0498(3)	0.9555(2)	0.020(1)
C(11)	0.7569(3)	0.1525(3)	0.9727(2)	0.022(1)
C(12)	0.6910(3)	0.1990(3)	0.9288(2)	0.024(1)
C(13)	0.6768(3)	0.2935(3)	0.9409(3)	0.033(1)
C(14)	0.7284(3)	0.3445(3)	0.9953(3)	0.036(1)
C(15)	0.7956(3)	0.2999(3)	1.0379(3)	0.035(1)
C(16)	0.8100(3)	0.2059(3)	1.0268(3)	0.028(1)
P(1)	0.62861(7)	0.12964(8)	0.85371(6)	0.020(1)
C(21)	0.7952(2)	-0.0204(3)	1.0179(2)	0.023(1)
C(22)	0.7913(3)	-0.1167(3)	0.9993(2)	0.023(1)
C(23)	0.8054(3)	-0.1864(3)	1.0534(3)	0.029(1)
C(24)	0.8219(3)	-0.1625(4)	1.1271(3)	0.036(1)
C(25)	0.8242(3)	-0.0682(4)	1.1464(3)	0.034(1)
C(26)	0.8115(3)	0.0018(3)	1.0931(2)	0.029(1)
C(31)	0.8424(3)	0.0589(3)	0.9143(2)	0.024(1)
C(32)	0.9238(3)	0.0715(3)	0.9413(3)	0.027(1)
C(33)	0.9705(3)	0.0790(3)	0.8916(3)	0.034(1)
C(34)	0.9352(3)	0.0751(3)	0.8172(3)	0.032(1)
C(35)	0.8531(3)	0.0589(3)	0.7930(3)	0.030(1)
C(41)	0.6634(3)	-0.0740(3)	0.6273(2)	0.032(1)
C(42)	0.7381(3)	-0.0661(3)	0.6000(3)	0.035(1)
C(43)	0.6354(4)	-0.1758(4)	0.6197(3)	0.051(2)
C(44)	0.6000(3)	-0.0061(4)	0.5847(3)	0.048(2)
C(51)	0.5328(3)	0.1220(3)	0.8771(2)	0.024(1)
C(52)	0.4627(3)	0.1059(3)	0.8228(3)	0.028(1)
C(53)	0.3917(3)	0.0886(3)	0.8425(3)	0.036(1)
C(54)	0.3898(3)	0.0873(3)	0.9151(3)	0.038(1)
C(55)	0.4592(3)	0.1041(4)	0.9690(3)	0.043(1)
C(56)	0.5308(3)	0.1216(3)	0.9503(3)	0.032(1)
C(61)	0.6098(3)	0.2091(3)	0.7739(2)	0.024(1)
C(62)	0.6527(3)	0.1940(3)	0.7216(2)	0.030(1)
C(63)	0.6460(3)	0.2590(4)	0.6643(3)	0.038(1)
C(64)	0.5966(3)	0.3355(4)	0.6589(3)	0.040(1)
C(65)	0.5525(3)	0.3499(3)	0.7095(3)	0.034(1)
			Continue	ed on next page

atom	X	y y	X	U(eq)
C(66)	0.5583(3)	0.2866(3)	0.7664(3)	0.029(1)
C(71)	0.8524(3)	-0.1768(3)	0.8767(2)	0.024(1)
C(72)	0.8551(3)	-0.1646(3)	0.8040(3)	0.032(1)
C(73)	0.9250(3)	-0.1899(4)	0.7828(3)	0.040(1)
C(74)	0.9883(3)	-0.2303(4)	0.8338(3)	0.040(1)
C(75)	0.9835(3)	-0.2436(4)	0.9046(3)	0.041(1)
C(76)	0.9169(3)	-0.2162(3)	0.9266(3)	0.033(1)
C(81)	0.7058(3)	-0.2563(3)	0.8929(2)	0.025(1)
C(82)	0.7399(3)	-0.3417(3)	0.8811(3)	0.037(1)
C(83)	0.6966(3)	-0.4250(4)	0.8746(3)	0.045(2)
C(84)	0.6188(3)	-0.4232(3)	0.8793(3)	0.032(1)
C(85)	0.5842(3)	-0.3398(3)	0.8905(3)	0.036(1)
C(86)	0.6268(3)	-0.2563(3)	0.8957(3)	0.033(1)
H(4A)	0.6177	-0.1219	0.7514	0.033
H(4B)	0.5862	-0.0163	0.7292	0.033
H(13)	0.6307	0.3235	0.9110	0.039
H(14)	0.7180	0.4091	1.0034	0.043
H(15)	0.8323	0.3343	1.0753	0.042
H(16)	0.8568	0.1767	1.0564	0.033
Н	0.635(3)	-0.043(4)	0.885(3)	0.059(16)
H(23)	0.8037	-0.2511	1.0396	0.034
H(24)	0.8314	-0.2103	1.1639	0.043
H(25)	0.8346	-0.0512	1.1969	0.041
H(26)	0.8139	0.0662	1.1078	0.034
H(32)	0.9474	0.0749	0.9928	0.033
H(33)	1.0268	0.0869	0.9088	0.041
H(34)	0.9664	0.0834	0.7827	0.039
H(35)	0.8286	0.0539	0.7418	0.036
H(42A)	0.7256	-0.0832	0.5478	0.053
H(42B)	0.7792	-0.1091	0.6282	0.053
H(42C)	0.7581	-0.0010	0.6063	0.053
H(43A)	0.5815	-0.1799	0.6275	0.077
H(43B)	0.6723	-0.2148	0.6564	0.077
H(43C)	0.6343	-0.1988	0.5702	0.077
H(44A)	0.5902	-0.0186	0.5319	0.072
H(44B)	0.6187	0.0591	0.5951	0.072
H(44C)	0.5502	-0.0151	0.5998	0.072
H(52)	0.4633	0.1066	0.7724	0.034
H(53)	0.3438	0.0776	0.8052	0.043
H(54)	0.3411	0.0749	0.9280	0.045
H(55)	0.4582	0.1037	1.0193	0.051
H(56)	0.5783	0.1333	0.9878	0.038
			Cor	ntinued on next page

Table S13. – continued from previous page

	r	r		
atom	X	У	X	U(eq)
H(62)	0.6862	0.1401	0.7247	0.036
H(63)	0.6761	0.2500	0.6290	0.046
H(64)	0.5926	0.3792	0.6197	0.048
H(65)	0.5182	0.4032	0.7051	0.041
H(66)	0.5272	0.2959	0.8008	0.035
H(72)	0.8103	-0.1394	0.7689	0.038
H(73)	0.9284	-0.1792	0.7338	0.048
H(74)	1.0351	-0.2488	0.8197	0.048
H(75)	1.0270	-0.2723	0.9392	0.049
H(76)	0.9154	-0.2244	0.9764	0.040
H(82)	0.7938	-0.3431	0.8775	0.044
H(83)	0.7207	-0.4832	0.8668	0.054
H(84)	0.5889	-0.4802	0.8749	0.039
H(85)	0.5305	-0.3390	0.8947	0.043
H(86)	0.6015	-0.1982	0.9013	0.040

Table S13. – continued from previous page

atom						I I
	$\frac{U_{11}}{0.0154(1)}$	$\frac{U_{22}}{0.01(4(1))}$	$\frac{U_{33}}{0.0102(1)}$	$\frac{U_{23}}{0.0000(1)}$	$\frac{U_{13}}{0.0057(1)}$	$\frac{U_{12}}{0.0000(1)}$
$I\Gamma$	0.0154(1)	0.0164(1)	0.0193(1)	0.0000(1)	0.005/(1)	0.0000(1)
P(2)	0.0192(6)	0.0204(6)	0.0279(6)	0.0012(5)	0.0055(5)	0.0002(5)
\mathbf{O}	0.0292(19)	0.0282(17)	0.0200(16)	-0.0013(13)	0.0090(14)	0.0015(14)
C(4)	0.029(3)	0.030(3)	0.024(2)	-0.001(2)	0.006(2)	-0.002(2)
N	0.01/(2)	0.0181(19)	0.027(2)	0.0003(16)	0.0096(17)	0.0010(15)
C C(11)	0.016(2)	0.022(2)	0.020(2)	-0.0033(18)	0.0016(19)	-0.001/(18)
C(11)	0.022(3)	0.023(2)	0.025(2)	-0.0006(19)	0.012(2)	0.0021(19)
C(12)	0.018(3)	0.029(3)	0.026(2)	0.002(2)	0.010(2)	0.0005(19)
C(13)	0.036(3)	0.030(3)	0.030(3)	-0.003(2)	0.004(2)	0.004(2)
C(14)	0.047(3)	0.024(3)	0.037(3)	-0.008(2)	0.012(3)	0.004(2)
C(15)	0.031(3)	0.035(3)	0.039(3)	-0.013(2)	0.010(3)	-0.002(2)
C(16)	0.022(3)	0.030(3)	0.030(3)	-0.005(2)	0.005(2)	-0.001(2)
P(1)	0.0163(6)	0.0207(6)	0.0239(6)	0.0000(5)	0.0061(5)	0.0016(5)
C(21)	0.011(2)	0.029(3)	0.030(2)	0.003(2)	0.0029(19)	-0.0007(18)
C(22)	0.015(2)	0.028(3)	0.025(2)	0.000(2)	0.006(2)	0.0003(19)
C(23)	0.022(3)	0.028(3)	0.033(3)	0.007(2)	0.002(2)	0.003(2)
C(24)	0.026(3)	0.041(3)	0.036(3)	0.012(2)	0.001(2)	0.000(2)
C(25)	0.026(3)	0.048(3)	0.025(3)	0.005(2)	0.001(2)	-0.003(2)
C(26)	0.022(2)	0.033(3)	0.029(2)	-0.001(2)	0.0032(19)	-0.003(2)
C(31)	0.023(3)	0.016(2)	0.031(3)	-0.0009(19)	0.005(2)	-0.0003(19)
C(32)	0.022(3)	0.027(2)	0.032(3)	-0.003(2)	0.004(2)	0.002(2)
C(33)	0.022(3)	0.038(3)	0.047(3)	-0.005(2)	0.017(2)	-0.005(2)
C(34)	0.025(3)	0.035(3)	0.043(3)	0.000(2)	0.020(2)	-0.006(2)
C(35)	0.034(3)	0.025(3)	0.033(3)	-0.002(2)	0.013(2)	-0.003(2)
C(41)	0.041(3)	0.031(3)	0.025(3)	-0.004(2)	0.012(2)	-0.005(2)
C(42)	0.044(3)	0.038(3)	0.027(3)	0.006(2)	0.015(2)	0.013(2)
C(43)	0.071(4)	0.043(3)	0.051(4)	-0.017(3)	0.035(3)	-0.017(3)
C(44)	0.034(3)	0.080(4)	0.029(3)	-0.001(3)	0.004(2)	0.012(3)
C(51)	0.022(3)	0.020(2)	0.034(3)	0.002(2)	0.013(2)	0.0043(19)
C(52)	0.023(3)	0.026(3)	0.034(3)	-0.002(2)	0.006(2)	-0.002(2)
C(53)	0.022(3)	0.030(3)	0.055(4)	-0.003(2)	0.008(3)	-0.001(2)
C(54)	0.028(3)	0.031(3)	0.062(4)	0.003(3)	0.027(3)	0.005(2)
C(55)	0.039(3)	0.057(4)	0.040(3)	0.004(3)	0.024(3)	0.005(3)
C(56)	0.021(3)	0.043(3)	0.034(3)	0.002(2)	0.009(2)	0.003(2)
C(61)	0.024(3)	0.025(2)	0.022(2)	-0.0012(19)	0.004(2)	-0.002(2)
C(62)	0.030(3)	0.031(3)	0.028(3)	-0.003(2)	0.007(2)	0.003(2)
C(63)	0.048(4)	0.042(3)	0.029(3)	0.007(2)	0.016(3)	-0.002(3)
C(64)	0.052(4)	0.037(3)	0.028(3)	0.011(2)	0.008(3)	-0.002(3)
C(65)	0.038(3)	0.026(3)	0.035(3)	0.004(2)	0.004(3)	0.004(2)
C(66)	0.032(3)	0.026(2)	0.029(3)	-0.002(2)	0.007(2)	0.002(2)
					Continue	d on next page

Table S14. Anisotropic displacement parameters (Å²) for $[(PC^{Py}P)IrH(CH_2O'Bu]$ (10). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(71)	0.019(3)	0.022(2)	0.033(3)	-0.005(2)	0.009(2)	-0.0046(19)
C(72)	0.026(3)	0.025(3)	0.040(3)	-0.005(2)	0.001(2)	0.003(2)
C(73)	0.042(4)	0.042(3)	0.039(3)	-0.011(2)	0.016(3)	0.000(3)
C(74)	0.025(3)	0.038(3)	0.060(4)	-0.015(3)	0.015(3)	0.004(2)
C(75)	0.027(3)	0.038(3)	0.057(4)	-0.010(3)	0.008(3)	0.004(2)
C(76)	0.026(3)	0.030(3)	0.042(3)	-0.004(2)	0.007(2)	0.000(2)
C(81)	0.027(3)	0.021(2)	0.023(2)	-0.0005(19)	0.000(2)	-0.004(2)
C(82)	0.032(3)	0.025(3)	0.056(3)	-0.002(2)	0.016(3)	-0.004(2)
C(83)	0.049(4)	0.024(3)	0.062(4)	-0.005(2)	0.013(3)	0.002(3)
C(84)	0.037(3)	0.023(3)	0.033(3)	0.004(2)	0.002(2)	-0.012(2)
C(85)	0.028(3)	0.031(3)	0.044(3)	0.003(2)	0.002(2)	-0.010(2)
C(86)	0.022(3)	0.027(3)	0.050(3)	-0.004(2)	0.009(2)	-0.001(2)

Table S14. – continued from previous page

atom – atom	distance	atom – atom	distance
Ir - C(4)	2.123(4)	Ir-C	2.187(4)
Ir-N	2.199(3)	$\operatorname{Ir} - \mathbf{P}(1)$	2.2459(11)
Ir - P(2)	2.2699(12)	Ir-H	1.39(5)
P(2) - C(22)	1.835(4)	P(2) - C(81)	1.836(4)
P(2) - C(71)	1.840(5)	O - C(41)	1.437(5)
O - C(4)	1.451(5)	C(4) - H(4A)	0.9900
C(4) - H(4B)	0.9900	N - C(35)	1.341(6)
N - C(31)	1.352(5)	C - C(21)	1.507(6)
C - C(31)	1.532(6)	C - C(11)	1.546(6)
C(11) - C(12)	1.389(6)	C(11) - C(16)	1.404(6)
C(12) - C(13)	1.388(6)	C(12) - P(1)	1.826(5)
C(13) - C(14)	1.376(7)	C(13) - H(13)	0.9500
C(14) - C(15)	1.384(7)	C(14) - H(14)	0.9500
C(15) - C(16)	1.377(6)	C(15) - H(15)	0.9500
C(16) - H(16)	0.9500	P(1) - C(51)	1.821(5)
P(1) - C(61)	1.836(4)	C(21) - C(26)	1.404(6)
C(21) - C(22)	1.404(6)	C(22) - C(23)	1.392(6)
C(23) - C(24)	1.382(6)	C(23) - H(23)	0.9500
C(24) - C(25)	1.380(7)	C(24) - H(24)	0.9500
C(25) - C(26)	1.386(6)	C(25) - H(25)	0.9500
C(26) - H(26)	0.9500	C(31) - C(32)	1.380(6)
C(32) - C(33)	1.387(6)	C(32) - H(32)	0.9500
C(33) - C(34)	1.376(7)	C(33) - H(33)	0.9500
C(34) - C(35)	1.393(6)	C(34) - H(34)	0.9500
C(35) - H(35)	0.9500	C(41) - C(42)	1.511(7)
C(41) - C(43)	1.514(7)	C(41) - C(44)	1.521(7)
C(42) - H(42A)	0.9800	C(42) - H(42B)	0.9800
C(42) - H(42C)	0.9800	C(43) - H(43A)	0.9800
C(43) - H(43B)	0.9800	C(43) - H(43C)	0.9800
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800	C(51) - C(56)	1.385(6)
C(51) - C(52)	1.389(6)	C(52) - C(53)	1.391(6)
C(52) - H(52)	0.9500	C(53) - C(54)	1.373(7)
C(53) - H(53)	0.9500	C(54) - C(55)	1.378(7)
C(54) - H(54)	0.9500	C(55) - C(56)	1.391(7)
C(55) - H(55)	0.9500	C(56) - H(56)	0.9500
C(61) - C(62)	1.392(6)	C(61) - C(66)	1.396(6)
C(62) - C(63)	1.397(6)	C(62) - H(62)	0.9500
C(63) - C(64)	1.365(7)	C(63) - H(63)	0.9500
C(64) - C(65)	1.377(7)	C(64) - H(64)	0.9500
C(65) – C(66)	1.379(6)	C(65) - H(65)	0.9500
		Conti	nued on next page

atom – atom	distance	atom – atom	distance
C(66)-H(66)	0.9500	C(71)-C(76)	1.378(6)
C(71) - C(72)	1.389(6)	C(72) - C(73)	1.411(7)
C(72) - H(72)	0.9500	C(73) - C(74)	1.380(7)
C(73) - H(73)	0.9500	C(74) - C(75)	1.368(7)
C(74) - H(74)	0.9500	C(75) - C(76)	1.374(7)
C(75) - H(75)	0.9500	C(76) - H(76)	0.9500
C(81) - C(86)	1.379(6)	C(81) - C(82)	1.387(6)
C(82) - C(83)	1.384(7)	C(82) - H(82)	0.9500
C(83) - C(84)	1.371(7)	C(83) - H(83)	0.9500
C(84) - C(85)	1.363(7)	C(84) - H(84)	0.9500
C(85) - C(86)	1.383(6)	C(85) - H(85)	0.9500
C(86)-H(86)	0.9500		

Table S15. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(4) - Ir - C	168.58(16)	C(4) - Ir - N	103.95(15)
C - Ir - N	64.64(15)	C(4) - Ir - P(1)	97.52(13)
C - Ir - P(1)	85.06(11)	N-Ir-P(1)	98.47(9)
C(4) - Ir - P(2)	98.82(13)	C - Ir - P(2)	81.39(12)
N - Ir - P(2)	89.66(9)	P(1) - Ir - P(2)	159.42(4)
C(4) - Ir - H	91(2)	C-Ir-H	101(2)
N - Ir - H	165(2)	P(1)-Ir-H	84(2)
P(2) - Ir - H	84(2)	C(22) - P(2) - C(81)	105.8(2)
C(22) - P(2) - C(71)	104.0(2)	C(81) - P(2) - C(71)	102.1(2)
C(22) - P(2) - Ir	101.13(15)	C(81) - P(2) - Ir	121.50(15)
C(71) - P(2) - Ir	120.26(15)	C(41) - O - C(4)	118.5(3)
O - C(4) - Ir	107.0(3)	O - C(4) - H(4A)	110.3
Ir - C(4) - H(4A)	110.3	O - C(4) - H(4B)	110.3
Ir - C(4) - H(4B)	110.3	H(4A) - C(4) - H(4B)	108.6
C(35) - N - C(31)	120.2(4)	C(35) - N - Ir	143.5(3)
C(31) - N - Ir	94.3(3)	C(21) - C - C(31)	114.3(4)
C(21) - C - C(11)	118.1(4)	C(31) - C - C(11)	105.1(3)
C(21)-C-Ir	112.6(3)	C(31)-C-Ir	89.8(3)
C(11)-C-Ir	113.3(3)	C(12) - C(11) - C(16)	117.4(4)
C(12) - C(11) - C	120.9(4)	C(16) - C(11) - C	121.2(4)
C(13) - C(12) - C(11)	120.7(4)	C(13) - C(12) - P(1)	123.4(4)
C(11) - C(12) - P(1)	115.9(3)	C(14) - C(13) - C(12)	121.3(5)
C(14) - C(13) - H(13)	119.4	C(12) - C(13) - H(13)	119.4
C(13) - C(14) - C(15)	118.6(4)	C(13) - C(14) - H(14)	120.7
C(15) - C(14) - H(14)	120.7	C(16) - C(15) - C(14)	120.7(5)
C(16) - C(15) - H(15)	119.7	C(14) - C(15) - H(15)	119.7
C(15) - C(16) - C(11)	121.3(4)	C(15) - C(16) - H(16)	119.4
C(11) - C(16) - H(16)	119.4	C(51) - P(1) - C(12)	103.8(2)
C(51) - P(1) - C(61)	104.6(2)	C(12) - P(1) - C(61)	104.4(2)
C(51) - P(1) - Ir	115.92(14)	C(12) - P(1) - Ir	104.47(15)
C(61) - P(1) - Ir	121.73(15)	C(26) - C(21) - C(22)	116.9(4)
C(26) - C(21) - C	125.7(4)	C(22) - C(21) - C	117.3(4)
C(23) - C(22) - C(21)	121.2(4)	C(23) - C(22) - P(2)	123.1(3)
C(21) - C(22) - P(2)	115.6(3)	C(24) - C(23) - C(22)	120.7(4)
C(24) - C(23) - H(23)	119.6	C(22) - C(23) - H(23)	119.6
C(25) - C(24) - C(23)	119.0(5)	C(25) - C(24) - H(24)	120.5
C(23) - C(24) - H(24)	120.5	C(24) - C(25) - C(26)	120.8(5)
C(24) - C(25) - H(25)	119.6	C(26) - C(25) - H(25)	119.6
C(25) - C(26) - C(21)	121.4(4)	C(25) - C(26) - H(26)	119.3
C(21) - C(26) - H(26)	119.3	N-C(31)-C(32)	121.5(4)
N - C(31) - C	108.6(4)	C(32) - C(31) - C	129.9(4)
		Continue	d on next page

Table S16. Angles [°] for $[(PC^{Py}P)IrH(CH_2O'Bu]$ (10).

atom – atom – atom	angle	atom – atom – atom	angle
C(31) - C(32) - C(33)	118.5(5)	C(31) - C(32) - H(32)	120.8
C(33) - C(32) - H(32)	120.8	C(34) - C(33) - C(32)	119.9(5)
C(34) - C(33) - H(33)	120.0	C(32) - C(33) - H(33)	120.0
C(33) - C(34) - C(35)	119.2(5)	C(33) - C(34) - H(34)	120.4
C(35) - C(34) - H(34)	120.4	N - C(35) - C(34)	120.6(4)
N - C(35) - H(35)	119.7	C(34) - C(35) - H(35)	119.7
O - C(41) - C(42)	103.5(4)	O - C(41) - C(43)	111.3(4)
C(42) - C(41) - C(43)	108.5(4)	O - C(41) - C(44)	110.9(4)
C(42) - C(41) - C(44)	109.7(4)	C(43) - C(41) - C(44)	112.4(5)
C(41) - C(42) - H(42A)	109.5	C(41) - C(42) - H(42B)	109.5
H(42A) - C(42) - H(42B)	109.5	C(41) - C(42) - H(42C)	109.5
H(42A) - C(42) - H(42C)	109.5	H(42B) - C(42) - H(42C)	109.5
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(56) - C(51) - C(52)	119.4(4)	C(56) - C(51) - P(1)	119.7(4)
C(52) - C(51) - P(1)	120.5(3)	C(51) - C(52) - C(53)	119.7(5)
C(51) - C(52) - H(52)	120.1	C(53) - C(52) - H(52)	120.1
C(54) - C(53) - C(52)	120.9(5)	C(54) - C(53) - H(53)	119.6
C(52) - C(53) - H(53)	119.6	C(53) - C(54) - C(55)	119.4(5)
C(53) - C(54) - H(54)	120.3	C(55) - C(54) - H(54)	120.3
C(54) - C(55) - C(56)	120.4(5)	C(54) - C(55) - H(55)	119.8
C(56) - C(55) - H(55)	119.8	C(51) - C(56) - C(55)	120.2(5)
C(51) - C(56) - H(56)	119.9	C(55) - C(56) - H(56)	119.9
C(62) - C(61) - C(66)	119.4(4)	C(62) - C(61) - P(1)	117.9(3)
C(66) - C(61) - P(1)	122.5(4)	C(61) - C(62) - C(63)	119.2(4)
C(61) - C(62) - H(62)	120.4	C(63) - C(62) - H(62)	120.4
C(64) - C(63) - C(62)	120.4(5)	C(64) - C(63) - H(63)	119.8
C(62) - C(63) - H(63)	119.8	C(63) - C(64) - C(65)	120.7(5)
C(63) - C(64) - H(64)	119.6	C(65) - C(64) - H(64)	119.6
C(64) - C(65) - C(66)	119.8(5)	C(64) - C(65) - H(65)	120.1
C(66) - C(65) - H(65)	120.1	C(65) - C(66) - C(61)	120.3(5)
C(65) - C(66) - H(66)	119.8	C(61) - C(66) - H(66)	119.8
C(76) - C(71) - C(72)	119.6(4)	C(76) - C(71) - P(2)	123.0(4)
C(72) - C(71) - P(2)	117.3(4)	C(71) - C(72) - C(73)	119.6(5)
C(71) - C(72) - H(72)	120.2	C(73) - C(72) - H(72)	120.2
C(74) - C(73) - C(72)	119.5(5)	C(74) - C(73) - H(73)	120.3
C(72) - C(73) - H(73)	120.3	C(75) - C(74) - C(73)	119.8(5)
C(75) - C(74) - H(74)	120.1	C(73) - C(74) - H(74)	120.1
		Continue	d on next page

Table S16. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(74) - C(75) - C(76)	121.2(5)	C(74) - C(75) - H(75)	119.4
C(76) - C(75) - H(75)	119.4	C(75) - C(76) - C(71)	120.2(5)
C(75) - C(76) - H(76)	119.9	C(71) - C(76) - H(76)	119.9
C(86) - C(81) - C(82)	118.2(4)	C(86) - C(81) - P(2)	118.7(3)
C(82) - C(81) - P(2)	123.1(4)	C(83) - C(82) - C(81)	120.9(5)
C(83) - C(82) - H(82)	119.6	C(81) - C(82) - H(82)	119.6
C(84) - C(83) - C(82)	119.7(5)	C(84) - C(83) - H(83)	120.2
C(82) - C(83) - H(83)	120.2	C(85) - C(84) - C(83)	120.2(5)
C(85) - C(84) - H(84)	119.9	C(83) - C(84) - H(84)	119.9
C(84) - C(85) - C(86)	120.2(5)	C(84) - C(85) - H(85)	119.9
C(86) - C(85) - H(85)	119.9	C(81) - C(86) - C(85)	120.8(5)
C(81) - C(86) - H(86)	119.6	C(85) - C(86) - H(86)	119.6

Table S16. – continued from previous page

3.4 Crystal data for [(PC^{Py}P)IrH(C₄H₇O)(CCHPh)] (11)

Figure S51. Thermal-ellipsoid representation of $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (11) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	pc8b	
Empirical formula:	$C_{54}H_{46}IrNOP_2$	
Formula weight:	979.06	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Triclinic	
Space group:	$P\bar{1}$	
Unit cell dimensions:	a = 10.4635(10) Å	$\alpha = 77.710(2)^{\circ}$
	b = 13.3359(12) Å	$\beta = 80.875(3)^{\circ}$
	c = 15.8836(15) Å	$\gamma = 85.402(2)^{\circ}$
Volume:	2135.7(3) Å ³	
Z:	2	
Density (calculated):	$1.522 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	3.242 mm^{-1}	
F(000):	984	
Crystal size:	$0.09 \times 0.08 \times 0.07 \text{ mm}^3$	
θ range for data collection:	1.56 to 25.00°	
Index ranges:	$-12 \le h \le 11, -15 \le k \le 14, -18 \le l \le 16$	
Reflections collected:	18693	
Independent reflections:	7517 [$R_{int} = 0.0626$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7454 and 0.6201	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	7517 / 0 / 537	
Goodness-of-fit on F ² :	0.981	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0436, wR_2 = 0.0868$	
R indices (all data):	$R_1 = 0.0635, wR_2 = 0.0919$	
Largest diff. peak and hole:	3.649 and $-3.069 e^{-1} \dot{A}^{-3}$	

Table S17. Crystal data and structure refinement for $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (11).

_

atom	X	У	Z	U(eq)
Ir	0.60637(2)	0.74861(2)	0.74056(2)	0.013(1)
P(2)	0.69118(17)	0.72679(12)	0.60604(10)	0.019(1)
Ν	0.8112(5)	0.6610(4)	0.8458(3)	0.014(1)
С	0.7879(6)	0.8220(4)	0.7394(4)	0.016(1)
C(11)	0.7525(6)	0.9297(4)	0.7589(4)	0.013(1)
C(12)	0.6432(6)	0.9402(4)	0.8217(4)	0.015(1)
C(13)	0.6110(6)	1.0321(4)	0.8479(4)	0.018(1)
C(14)	0.6834(6)	1.1178(5)	0.8107(4)	0.021(2)
C(15)	0.7855(7)	1.1107(5)	0.7464(4)	0.023(2)
C(16)	0.8218(6)	1.0179(5)	0.7200(4)	0.020(2)
P(1)	0.54113(15)	0.82871(12)	0.85293(10)	0.014(1)
C(21)	0.8829(6)	0.8195(4)	0.6565(4)	0.018(2)
C(22)	0.8489(6)	0.7833(5)	0.5870(4)	0.021(2)
C(23)	0.9341(7)	0.7896(5)	0.5085(4)	0.029(2)
C(24)	1.0570(7)	0.8268(5)	0.5012(4)	0.030(2)
C(25)	1.0953(7)	0.8560(5)	0.5720(5)	0.034(2)
C(26)	1.0105(6)	0.8521(5)	0.6485(5)	0.025(2)
C(31)	0.8429(6)	0.7613(5)	0.8184(4)	0.018(1)
C(32)	0.9201(6)	0.8001(5)	0.8674(4)	0.022(2)
C(33)	0.9591(7)	0.7418(5)	0.9414(4)	0.028(2)
C(34)	0.9170(6)	0.6418(5)	0.9705(4)	0.025(2)
C(35)	0.8439(6)	0.6041(5)	0.9217(4)	0.019(1)
C(41)	0.7156(6)	0.6235(4)	0.7998(4)	0.013(1)
C(42)	0.7293(6)	0.5237(4)	0.7946(4)	0.018(1)
C(43)	0.8350(6)	0.4467(4)	0.8104(4)	0.018(1)
C(44)	0.9651(7)	0.4702(5)	0.7770(5)	0.034(2)
C(45)	1.0635(7)	0.3948(5)	0.7832(6)	0.041(2)
C(46)	1.0374(7)	0.2942(5)	0.8232(5)	0.034(2)
C(47)	0.9110(7)	0.2704(5)	0.8578(5)	0.029(2)
C(48)	0.8109(6)	0.3472(5)	0.8504(4)	0.021(2)
C(51)	0.4389(6)	0.6635(5)	0.7529(4)	0.020(2)
C(61)	0.5665(6)	0.7681(5)	0.9640(4)	0.018(1)
C(54)	0.2482(9)	0.6190(8)	0.8455(7)	0.040(2)
C(53)	0.2186(10)	0.6454(8)	0.7545(7)	0.040(2)
0	0.3774(6)	0.6443(4)	0.8435(4)	0.025(2)
C(52)	0.3257(10)	0.7080(8)	0.7042(8)	0.040(2)
O(1)	0.372(2)	0.686(2)	0.6728(17)	0.025(2)
C(56)	0.206(5)	0.611(4)	0.783(3)	0.040(2)
C(55)	0.267(4)	0.612(3)	0.688(3)	0.040(2)
			Continue	ed on next page

Table S18. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (11). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

atom	X	y	X	U(eq)
C(57)	0.315(5)	0.659(4)	0.823(3)	0.040(2)
C(62)	0.6192(6)	0.8172(5)	1.0184(4)	0.020(2)
C(63)	0.6323(6)	0.7677(5)	1.1035(4)	0.024(2)
C(64)	0.5992(6)	0.6662(5)	1.1328(4)	0.024(2)
C(65)	0.5503(6)	0.6147(5)	1.0799(4)	0.024(2)
C(66)	0.5332(6)	0.6654(4)	0.9957(4)	0.020(2)
C(71)	0.3780(6)	0.8920(4)	0.8688(4)	0.017(1)
C(72)	0.3248(6)	0.9412(5)	0.7954(5)	0.024(2)
C(73)	0.2064(7)	0.9964(5)	0.8036(5)	0.033(2)
C(74)	0.1428(7)	1.0050(5)	0.8850(5)	0.031(2)
C(75)	0.1955(6)	0.9569(5)	0.9583(5)	0.029(2)
C(76)	0.3131(6)	0.8997(5)	0.9501(4)	0.024(2)
C(81)	0.6127(7)	0.7851(5)	0.5102(4)	0.027(2)
C(82)	0.6546(8)	0.7545(6)	0.4304(5)	0.042(2)
C(83)	0.5953(10)	0.7999(7)	0.3574(5)	0.052(3)
C(84)	0.4969(9)	0.8744(7)	0.3637(5)	0.047(2)
C(85)	0.4559(8)	0.9029(6)	0.4416(5)	0.043(2)
C(86)	0.5118(7)	0.8579(5)	0.5148(5)	0.030(2)
C(91)	0.7226(7)	0.5959(5)	0.5878(4)	0.025(2)
C(92)	0.8425(8)	0.5437(5)	0.5849(5)	0.037(2)
C(93)	0.8539(10)	0.4394(6)	0.5775(5)	0.055(3)
C(94)	0.7441(11)	0.3906(6)	0.5745(6)	0.058(3)
C(95)	0.6250(10)	0.4405(6)	0.5773(5)	0.049(2)
C(96)	0.6135(8)	0.5429(5)	0.5840(5)	0.034(2)
H(13)	0.5388	1.0371	0.8916	0.022
H(14)	0.6621	1.1807	0.8299	0.025
H(15)	0.8325	1.1700	0.7192	0.027
H(16)	0.8935	1.0143	0.6757	0.024
H(23)	0.9080	0.7686	0.4606	0.035
H(24)	1.1144	0.8322	0.4480	0.036
H(25)	1.1803	0.8788	0.5677	0.041
H(26)	1.0383	0.8717	0.6966	0.031
H(32)	0.9461	0.8689	0.8486	0.026
H(33)	1.0139	0.7688	0.9725	0.033
H(34)	0.9390	0.6008	1.0234	0.030
H(35)	0.8150	0.5362	0.9412	0.023
H(42)	0.6569	0.4987	0.7776	0.022
H(44)	0.9851	0.5389	0.7500	0.041
H(45)	1.1501	0.4121	0.7598	0.050
H(46)	1.1053	0.2424	0.8268	0.040
H(47)	0.8918	0.2020	0.8865	0.035
H(48)	0.7245	0.3295	0.8738	0.025
			Continue	ed on next page

Table S18. – continued from previous page

atom	X	y y	X	U(eq)
H(51)	0.4675	0.5957	0.7372	0.024
Н	0.537(5)	0.849(4)	0.694(4)	0.014(15)
H(54A)	0.1881	0.6582	0.8827	0.048
H(54B)	0.2381	0.5447	0.8695	0.048
H(53A)	0.2148	0.5824	0.7315	0.048
H(53B)	0.1345	0.6848	0.7517	0.048
H(52A)	0.3075	0.7818	0.7054	0.048
H(52B)	0.3426	0.6995	0.6430	0.048
H(56A)	0.1871	0.5407	0.8154	0.048
H(56B)	0.1240	0.6546	0.7853	0.048
H(55A)	0.3037	0.5425	0.6812	0.048
H(55B)	0.2032	0.6349	0.6474	0.048
H(57A)	0.2870	0.7289	0.8334	0.048
H(57B)	0.3328	0.6149	0.8791	0.048
H(62)	0.6466	0.8854	0.9973	0.024
H(63)	0.6637	0.8034	1.1412	0.029
H(64)	0.6106	0.6320	1.1902	0.029
H(65)	0.5283	0.5451	1.1004	0.029
H(66)	0.4985	0.6299	0.9593	0.024
H(72)	0.3695	0.9372	0.7392	0.029
H(73)	0.1693	1.0282	0.7530	0.039
H(74)	0.0630	1.0439	0.8904	0.037
H(75)	0.1519	0.9626	1.0144	0.034
H(76)	0.3486	0.8660	1.0008	0.029
H(82)	0.7225	0.7033	0.4260	0.050
H(83)	0.6230	0.7794	0.3034	0.063
H(84)	0.4577	0.9059	0.3140	0.057
H(85)	0.3881	0.9543	0.4457	0.051
H(86)	0.4804	0.8774	0.5688	0.036
H(92)	0.9173	0.5780	0.5878	0.044
H(93)	0.9362	0.4035	0.5748	0.065
H(94)	0.7516	0.3203	0.5702	0.069
H(95)	0.5506	0.4054	0.5748	0.059
H(96)	0.5306	0.5778	0.5861	0.041

Table S18. – continued from previous page

atom	U11	Um	U22	Um Um	U12	U12
Ir	0.0137(1)	$\frac{0.22}{0.0124(1)}$	$\frac{0.0121(1)}{0.0121(1)}$	-0.0036(1)	-0.0031(1)	$\frac{0.12}{0.0007(1)}$
P(2)	0.0197(1) 0.0293(11)	0.0121(1) 0.0170(9)	0.0121(1) 0.0117(9)	-0.0050(7)	-0.0034(7)	0.0007(1) 0.0030(7)
N	0.011(3)	0.013(3)	0.017(3)	-0.001(2)	-0.004(2)	-0.002(2)
C	0.023(4)	0.012(3)	0.012(3)	-0.001(2)	-0.003(3)	-0.004(3)
C(11)	0.013(3)	0.012(3)	0.016(3)	-0.003(2)	-0.005(3)	0.000(2)
C(12)	0.019(4)	0.017(3)	0.013(3)	-0.004(3)	-0.011(3)	-0.003(3)
C(13)	0.026(4)	0.017(3)	0.011(3)	0.000(3)	-0.004(3)	-0.002(3)
C(14)	0.032(4)	0.012(3)	0.021(4)	-0.004(3)	-0.009(3)	-0.001(3)
C(15)	0.030(4)	0.016(3)	0.022(4)	0.004(3)	-0.005(3)	-0.018(3)
C(16)	0.027(4)	0.019(4)	0.011(3)	0.002(3)	0.000(3)	-0.009(3)
P(1)	0.0142(9)	0.0137(8)	0.0137(9)	-0.0036(6)	-0.0013(7)	-0.0021(7)
C(21)	0.018(4)	0.012(3)	0.022(4)	0.000(3)	-0.002(3)	0.004(3)
C(22)	0.022(4)	0.018(3)	0.019(4)	-0.001(3)	0.002(3)	0.009(3)
C(23)	0.040(5)	0.028(4)	0.013(4)	0.003(3)	0.005(3)	-0.005(3)
C(24)	0.034(5)	0.032(4)	0.016(4)	-0.001(3)	0.014(3)	0.005(3)
C(25)	0.020(4)	0.035(4)	0.036(5)	0.009(3)	0.009(3)	0.000(3)
C(26)	0.016(4)	0.023(4)	0.031(4)	0.002(3)	0.006(3)	-0.001(3)
C(31)	0.016(4)	0.018(3)	0.018(4)	-0.004(3)	0.004(3)	-0.002(3)
C(32)	0.020(4)	0.019(4)	0.026(4)	0.000(3)	-0.003(3)	-0.006(3)
C(33)	0.031(4)	0.031(4)	0.023(4)	-0.001(3)	-0.012(3)	-0.007(3)
C(34)	0.023(4)	0.028(4)	0.021(4)	0.001(3)	-0.005(3)	-0.001(3)
C(35)	0.023(4)	0.018(3)	0.016(4)	0.000(3)	-0.006(3)	-0.003(3)
C(41)	0.010(3)	0.019(3)	0.009(3)	-0.002(2)	0.003(2)	-0.007(3)
C(42)	0.020(4)	0.011(3)	0.023(4)	0.000(3)	-0.009(3)	-0.002(3)
C(43)	0.016(4)	0.011(3)	0.029(4)	-0.005(3)	-0.007(3)	-0.003(3)
C(44)	0.027(4)	0.016(4)	0.055(5)	-0.003(3)	-0.002(4)	0.001(3)
C(45)	0.020(4)	0.026(4)	0.076(6)	-0.008(4)	-0.005(4)	-0.004(3)
C(46)	0.029(5)	0.028(4)	0.051(5)	-0.014(4)	-0.024(4)	0.013(3)
C(47)	0.034(5)	0.017(4)	0.038(5)	-0.004(3)	-0.014(4)	-0.001(3)
C(48)	0.013(4)	0.025(4)	0.026(4)	-0.003(3)	-0.008(3)	-0.005(3)
C(51)	0.027(4)	0.018(3)	0.019(4)	-0.005(3)	-0.010(3)	0.005(3)
C(61)	0.011(3)	0.025(4)	0.016(4)	-0.004(3)	0.001(3)	-0.001(3)
C(54)	0.018(3)	0.036(4)	0.064(5)	0.002(3)	-0.012(3)	-0.008(3)
C(53)	0.018(3)	0.036(4)	0.064(5)	0.002(3)	-0.012(3)	-0.008(3)
0	0.012(3)	0.023(3)	0.036(4)	0.002(3)	0.000(3)	-0.006(3)
C(52)	0.018(3)	0.036(4)	0.064(5)	0.002(3)	-0.012(3)	-0.008(3)
O(1)	0.012(3)	0.023(3)	0.036(4)	0.002(3)	0.000(3)	-0.006(3)
C(56)	0.018(3)	0.036(4)	0.064(5)	0.002(3)	-0.012(3)	-0.008(3)
C(55)	0.018(3)	0.036(4)	0.064(5)	0.002(3)	-0.012(3)	-0.008(3)
C(57)	0.018(3)	0.036(4)	0.064(5)	0.002(3)	-0.012(3)	-0.008(3)
					Continue	ed on next page

Table S19. Anisotropic displacement parameters (Å²) for $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (**11**). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(62)	0.023(4)	0.024(4)	0.011(3)	-0.003(3)	0.003(3)	-0.001(3)
C(63)	0.020(4)	0.030(4)	0.024(4)	-0.008(3)	-0.003(3)	0.000(3)
C(64)	0.024(4)	0.029(4)	0.014(4)	0.005(3)	-0.004(3)	0.007(3)
C(65)	0.024(4)	0.024(4)	0.020(4)	0.000(3)	0.003(3)	0.001(3)
C(66)	0.025(4)	0.013(3)	0.020(4)	0.000(3)	0.000(3)	-0.006(3)
C(71)	0.016(4)	0.012(3)	0.023(4)	-0.004(3)	-0.003(3)	-0.002(3)
C(72)	0.018(4)	0.025(4)	0.029(4)	-0.006(3)	-0.004(3)	0.009(3)
C(73)	0.036(5)	0.025(4)	0.037(5)	0.001(3)	-0.014(4)	0.000(3)
C(74)	0.018(4)	0.015(4)	0.053(5)	-0.003(3)	0.004(4)	0.004(3)
C(75)	0.020(4)	0.025(4)	0.038(5)	-0.008(3)	0.010(3)	-0.006(3)
C(76)	0.025(4)	0.028(4)	0.019(4)	-0.005(3)	0.000(3)	-0.002(3)
C(81)	0.045(5)	0.024(4)	0.013(4)	-0.003(3)	-0.008(3)	-0.008(3)
C(82)	0.058(6)	0.040(5)	0.027(5)	-0.006(4)	-0.001(4)	-0.009(4)
C(83)	0.096(8)	0.050(6)	0.015(4)	-0.001(4)	-0.010(4)	-0.038(5)
C(84)	0.059(6)	0.054(6)	0.032(5)	0.005(4)	-0.026(4)	-0.021(5)
C(85)	0.050(6)	0.034(5)	0.049(6)	0.005(4)	-0.036(4)	-0.006(4)
C(86)	0.036(5)	0.026(4)	0.028(4)	0.002(3)	-0.017(3)	-0.003(3)
C(91)	0.049(5)	0.015(3)	0.008(3)	-0.005(3)	0.005(3)	0.005(3)
C(92)	0.048(5)	0.025(4)	0.028(4)	-0.001(3)	0.008(4)	0.007(4)
C(93)	0.066(7)	0.035(5)	0.050(6)	-0.006(4)	0.015(5)	0.020(5)
C(94)	0.090(8)	0.026(5)	0.052(6)	-0.013(4)	0.011(5)	-0.002(5)
C(95)	0.074(7)	0.028(5)	0.050(6)	-0.019(4)	-0.007(5)	-0.007(4)
C(96)	0.050(5)	0.026(4)	0.028(4)	-0.010(3)	-0.003(4)	0.000(4)

Table S19. – continued from previous page

atom – atom	distance	atom – atom	distance
Ir - C(41)	2.084(6)	Ir - C(51)	2.124(7)
Ir-C	2.201(6)	Ir - P(2)	2.2493(17)
Ir - P(1)	2.2585(16)	Ir-H	1.57(5)
P(2) - C(22)	1.824(7)	P(2) - C(91)	1.825(6)
P(2) - C(81)	1.840(7)	N - C(35)	1.357(7)
N - C(31)	1.367(7)	N - C(41)	1.501(7)
C - C(31)	1.510(8)	C - C(21)	1.524(8)
C - C(11)	1.537(8)	C(11) - C(16)	1.406(8)
C(11) - C(12)	1.412(8)	C(12) - C(13)	1.377(8)
C(12) - P(1)	1.836(6)	C(13) - C(14)	1.392(9)
C(13) - H(13)	0.9500	C(14) - C(15)	1.369(9)
C(14) - H(14)	0.9500	C(15) - C(16)	1.395(9)
C(15) - H(15)	0.9500	C(16) - H(16)	0.9500
P(1) - C(61)	1.828(6)	P(1) - C(71)	1.847(6)
C(21) - C(22)	1.399(9)	C(21) - C(26)	1.416(9)
C(22) - C(23)	1.404(9)	C(23) - C(24)	1.394(10)
C(23) - H(23)	0.9500	C(24) - C(25)	1.389(10)
C(24) - H(24)	0.9500	C(25) - C(26)	1.381(9)
C(25) - H(25)	0.9500	C(26) - H(26)	0.9500
C(31) - C(32)	1.402(9)	C(32) - C(33)	1.365(9)
C(32) - H(32)	0.9500	C(33) - C(34)	1.398(9)
C(33) - H(33)	0.9500	C(34) - C(35)	1.362(9)
C(34) - H(34)	0.9500	C(35) - H(35)	0.9500
C(41) - C(42)	1.346(8)	C(42) - C(43)	1.462(8)
C(42) - H(42)	0.9500	C(43) - C(48)	1.369(8)
C(43) - C(44)	1.415(9)	C(44) - C(45)	1.380(9)
C(44) - H(44)	0.9500	C(45) - C(46)	1.385(10)
C(45) - H(45)	0.9500	C(46) - C(47)	1.384(10)
C(46) - H(46)	0.9500	C(47) - C(48)	1.405(9)
C(47) - H(47)	0.9500	C(48) - H(48)	0.9500
C(51)-O	1.457(8)	C(51) - O(1)	1.51(3)
C(51) - C(52)	1.528(11)	C(51) - C(57)	1.56(5)
C(51) - H(51)	1.0000	C(61) - C(62)	1.389(9)
C(61) - C(66)	1.406(8)	C(54) - O	1.415(11)
C(54) - C(53)	1.489(15)	C(54) - H(54A)	0.9900
C(54) - H(54B)	0.9900	C(53) - C(52)	1.475(14)
C(53)-H(53A)	0.9900	C(53) - H(53B)	0.9900
C(52)-H(52A)	0.9900	C(52) - H(52B)	0.9900
O(1)-C(55)	1.50(4)	C(56) - C(55)	1.55(7)
C(56) - C(57)	1.63(7)	C(56) - H(56A)	0.9900
C(56)-H(56B)	0.9900	C(55) - H(55A)	0.9900
			Continued on next page

Table S20. Distances [Å] for $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (11).

atom – atom	distance	atom – atom	distance
C(55)-H(55B)	0.9900	C(57)-H(57A)	0.9900
C(57)-H(57B)	0.9900	C(62) - C(63)	1.395(9)
C(62) - H(62)	0.9500	C(63) - C(64)	1.388(9)
C(63) - H(63)	0.9500	C(64) - C(65)	1.370(9)
C(64) - H(64)	0.9500	C(65) - C(66)	1.397(9)
C(65)-H(65)	0.9500	C(66)-H(66)	0.9500
C(71) - C(76)	1.381(9)	C(71) - C(72)	1.386(9)
C(72) - C(73)	1.392(9)	C(72) - H(72)	0.9500
C(73) - C(74)	1.380(10)	C(73) - H(73)	0.9500
C(74) - C(75)	1.379(10)	C(74) - H(74)	0.9500
C(75) - C(76)	1.397(9)	C(75) - H(75)	0.9500
C(76)-H(76)	0.9500	C(81) - C(86)	1.380(10)
C(81) - C(82)	1.408(10)	C(82) - C(83)	1.401(11)
C(82)-H(82)	0.9500	C(83) - C(84)	1.380(12)
C(83)-H(83)	0.9500	C(84) - C(85)	1.366(11)
C(84) - H(84)	0.9500	C(85) - C(86)	1.383(9)
C(85)-H(85)	0.9500	C(86)-H(86)	0.9500
C(91) - C(92)	1.384(10)	C(91) - C(96)	1.406(10)
C(92) - C(93)	1.415(10)	C(92) - H(92)	0.9500
C(93) - C(94)	1.377(13)	C(93)-H(93)	0.9500
C(94) - C(95)	1.365(12)	C(94) - H(94)	0.9500
C(95) - C(96)	1.386(10)	C(95) - H(95)	0.9500
C(96)-H(96)	0.9500		

Table S20. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(41) - Ir - C(51)	94.1(2)	C(41) - Ir - C	79.5(2)
C(51)-Ir-C	173.3(2)	C(41) - Ir - P(2)	92.59(16)
C(51) - Ir - P(2)	96.73(18)	C - Ir - P(2)	85.65(16)
C(41) - Ir - P(1)	100.92(16)	C(51) - Ir - P(1)	97.86(18)
C-Ir-P(1)	81.53(16)	P(2) - Ir - P(1)	159.29(6)
C(41) - Ir - H	174(2)	C(51)-Ir-H	92(2)
C-Ir-H	95(2)	P(2) - Ir - H	86(2)
P(1)-Ir-H	79(2)	C(22) - P(2) - C(91)	106.1(3)
C(22) - P(2) - C(81)	105.7(3)	C(91) - P(2) - C(81)	99.8(3)
C(22) - P(2) - Ir	103.8(2)	C(91) - P(2) - Ir	118.3(2)
C(81) - P(2) - Ir	121.7(2)	C(35) - N - C(31)	121.0(5)
C(35) - N - C(41)	120.6(5)	C(31) - N - C(41)	117.1(5)
C(31) - C - C(21)	110.9(5)	C(31) - C - C(11)	105.3(5)
C(21) - C - C(11)	114.9(5)	C(31)-C-Ir	104.7(4)
C(21)-C-Ir	112.5(4)	C(11)-C-Ir	107.9(4)
C(16) - C(11) - C(12)	117.7(5)	C(16) - C(11) - C	125.0(6)
C(12) - C(11) - C	117.4(5)	C(13) - C(12) - C(11)	121.0(6)
C(13) - C(12) - P(1)	124.2(5)	C(11) - C(12) - P(1)	114.4(4)
C(12) - C(13) - C(14)	120.5(6)	C(12) - C(13) - H(13)	119.7
C(14) - C(13) - H(13)	119.7	C(15) - C(14) - C(13)	119.4(6)
C(15) - C(14) - H(14)	120.3	C(13) - C(14) - H(14)	120.3
C(14) - C(15) - C(16)	121.2(6)	C(14) - C(15) - H(15)	119.4
C(16) - C(15) - H(15)	119.4	C(15) - C(16) - C(11)	120.2(6)
C(15) - C(16) - H(16)	119.9	C(11) - C(16) - H(16)	119.9
C(61) - P(1) - C(12)	105.7(3)	C(61) - P(1) - C(71)	102.9(3)
C(12) - P(1) - C(71)	101.2(3)	C(61) - P(1) - Ir	121.3(2)
C(12) - P(1) - Ir	101.0(2)	C(71) - P(1) - Ir	121.7(2)
C(22) - C(21) - C(26)	117.9(6)	C(22) - C(21) - C	121.7(6)
C(26) - C(21) - C	120.4(6)	C(21) - C(22) - C(23)	120.7(7)
C(21) - C(22) - P(2)	116.1(5)	C(23) - C(22) - P(2)	123.2(6)
C(24) - C(23) - C(22)	119.8(7)	C(24) - C(23) - H(23)	120.1
C(22) - C(23) - H(23)	120.1	C(25) - C(24) - C(23)	119.9(6)
C(25) - C(24) - H(24)	120.0	C(23) - C(24) - H(24)	120.0
C(26) - C(25) - C(24)	120.3(7)	C(26) - C(25) - H(25)	119.8
C(24) - C(25) - H(25)	119.8	C(25) - C(26) - C(21)	121.1(7)
C(25) - C(26) - H(26)	119.5	C(21) - C(26) - H(26)	119.5
N - C(31) - C(32)	117.3(5)	N - C(31) - C	117.1(5)
C(32) - C(31) - C	125.6(5)	C(33) - C(32) - C(31)	121.9(6)
C(33) - C(32) - H(32)	119.1	C(31) - C(32) - H(32)	119.1
C(32) - C(33) - C(34)	118.9(6)	C(32) - C(33) - H(33)	120.5
C(34) - C(33) - H(33)	120.5	C(35) - C(34) - C(33)	118.7(6)
Continued on next page			ed on next page

Table S21. Angles [°] for $[(PC^{Py}P)IrH(C_4H_7O)(CCHPh)]$ (11).

atom – atom – atom	angle	atom – atom – atom	angle
C(35) - C(34) - H(34)	120.6	C(33) - C(34) - H(34)	120.6
N - C(35) - C(34)	121.8(6)	N - C(35) - H(35)	119.1
C(34) - C(35) - H(35)	119.1	C(42) - C(41) - N	116.3(5)
C(42) - C(41) - Ir	133.6(5)	N - C(41) - Ir	109.3(4)
C(41) - C(42) - C(43)	131.9(6)	C(41) - C(42) - H(42)	114.1
C(43) - C(42) - H(42)	114.1	C(48) - C(43) - C(44)	117.6(6)
C(48) - C(43) - C(42)	121.3(6)	C(44) - C(43) - C(42)	120.9(5)
C(45) - C(44) - C(43)	121.0(6)	C(45) - C(44) - H(44)	119.5
C(43) - C(44) - H(44)	119.5	C(44) - C(45) - C(46)	120.7(7)
C(44) - C(45) - H(45)	119.6	C(46) - C(45) - H(45)	119.6
C(47) - C(46) - C(45)	119.0(6)	C(47) - C(46) - H(46)	120.5
C(45) - C(46) - H(46)	120.5	C(46) - C(47) - C(48)	120.1(6)
C(46) - C(47) - H(47)	120.0	C(48) - C(47) - H(47)	120.0
C(43) - C(48) - C(47)	121.6(6)	C(43) - C(48) - H(48)	119.2
C(47) - C(48) - H(48)	119.2	O - C(51) - O(1)	127.0(11)
O - C(51) - C(52)	102.4(6)	O(1) - C(51) - C(57)	98(2)
C(52) - C(51) - C(57)	73.6(18)	O - C(51) - Ir	109.2(4)
O(1) - C(51) - Ir	114.0(10)	C(52) - C(51) - Ir	120.8(5)
C(57) - C(51) - Ir	128.1(19)	O - C(51) - H(51)	107.9
O(1) - C(51) - H(51)	86.7	C(52) - C(51) - H(51)	107.9
C(57) - C(51) - H(51)	113.7	Ir - C(51) - H(51)	107.9
C(62) - C(61) - C(66)	118.0(6)	C(62) - C(61) - P(1)	123.6(5)
C(66) - C(61) - P(1)	118.3(5)	O - C(54) - C(53)	107.7(8)
O - C(54) - H(54A)	110.2	C(53) - C(54) - H(54A)	110.2
O - C(54) - H(54B)	110.2	C(53) - C(54) - H(54B)	110.2
H(54A) - C(54) - H(54B)	108.5	C(52) - C(53) - C(54)	105.2(9)
C(52) - C(53) - H(53A)	110.7	C(54) - C(53) - H(53A)	110.7
C(52) - C(53) - H(53B)	110.7	C(54) - C(53) - H(53B)	110.7
H(53A) - C(53) - H(53B)	108.8	C(54) - O - C(51)	107.8(7)
C(53) - C(52) - C(51)	101.9(8)	C(53) - C(52) - H(52A)	111.4
C(51) - C(52) - H(52A)	111.4	C(53) - C(52) - H(52B)	111.4
C(51) - C(52) - H(52B)	111.4	H(52A) - C(52) - H(52B)	109.2
C(55) - O(1) - C(51)	107(2)	C(55) - C(56) - C(57)	104(3)
C(55) - C(56) - H(56A)	111.0	C(57) - C(56) - H(56A)	111.0
C(55) - C(56) - H(56B)	111.0	C(57) - C(56) - H(56B)	111.0
H(56A) - C(56) - H(56B)	109.0	O(1) - C(55) - C(56)	103(3)
O(1) - C(55) - H(55A)	111.2	C(56) - C(55) - H(55A)	111.2
O(1) - C(55) - H(55B)	111.2	C(56) - C(55) - H(55B)	111.2
H(55A) - C(55) - H(55B)	109.1	C(51) - C(57) - C(56)	105(4)
C(51) - C(57) - H(57A)	110.7	C(56) - C(57) - H(57A)	110.7
C(51) - C(57) - H(57B)	110.7	C(56) - C(57) - H(57B)	110.7
H(57A) - C(57) - H(57B)	108.8	C(61) - C(62) - C(63)	120.8(6)
Continued on next page			

Table S21. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(61) - C(62) - H(62)	119.6	C(63) - C(62) - H(62)	119.6
C(64) - C(63) - C(62)	119.8(6)	C(64) - C(63) - H(63)	120.1
C(62) - C(63) - H(63)	120.1	C(65) - C(64) - C(63)	120.8(6)
C(65) - C(64) - H(64)	119.6	C(63) - C(64) - H(64)	119.6
C(64) - C(65) - C(66)	119.4(6)	C(64) - C(65) - H(65)	120.3
C(66) - C(65) - H(65)	120.3	C(65) - C(66) - C(61)	121.1(6)
C(65) - C(66) - H(66)	119.4	C(61) - C(66) - H(66)	119.4
C(76) - C(71) - C(72)	119.2(6)	C(76) - C(71) - P(1)	122.6(5)
C(72) - C(71) - P(1)	118.0(5)	C(71) - C(72) - C(73)	120.4(6)
C(71) - C(72) - H(72)	119.8	C(73) - C(72) - H(72)	119.8
C(74) - C(73) - C(72)	120.1(7)	C(74) - C(73) - H(73)	120.0
C(72) - C(73) - H(73)	120.0	C(75) - C(74) - C(73)	119.9(6)
C(75) - C(74) - H(74)	120.1	C(73) - C(74) - H(74)	120.1
C(74) - C(75) - C(76)	120.0(7)	C(74) - C(75) - H(75)	120.0
C(76) - C(75) - H(75)	120.0	C(71) - C(76) - C(75)	120.5(6)
C(71) - C(76) - H(76)	119.8	C(75) - C(76) - H(76)	119.8
C(86) - C(81) - C(82)	118.7(7)	C(86) - C(81) - P(2)	121.5(5)
C(82) - C(81) - P(2)	119.8(6)	C(83) - C(82) - C(81)	119.6(8)
C(83) - C(82) - H(82)	120.2	C(81) - C(82) - H(82)	120.2
C(84) - C(83) - C(82)	120.2(8)	C(84) - C(83) - H(83)	119.9
C(82) - C(83) - H(83)	119.9	C(85) - C(84) - C(83)	119.9(7)
C(85) - C(84) - H(84)	120.1	C(83) - C(84) - H(84)	120.1
C(84) - C(85) - C(86)	120.8(8)	C(84) - C(85) - H(85)	119.6
C(86) - C(85) - H(85)	119.6	C(81) - C(86) - C(85)	120.8(7)
C(81) - C(86) - H(86)	119.6	C(85) - C(86) - H(86)	119.6
C(92) - C(91) - C(96)	118.6(6)	C(92) - C(91) - P(2)	125.0(6)
C(96) - C(91) - P(2)	116.2(5)	C(91) - C(92) - C(93)	120.2(8)
C(91) - C(92) - H(92)	119.9	C(93) - C(92) - H(92)	119.9
C(94) - C(93) - C(92)	119.1(8)	C(94) - C(93) - H(93)	120.5
C(92) - C(93) - H(93)	120.5	C(95) - C(94) - C(93)	121.7(8)
C(95) - C(94) - H(94)	119.1	C(93) - C(94) - H(94)	119.1
C(94) - C(95) - C(96)	119.4(9)	C(94) - C(95) - H(95)	120.3
C(96) - C(95) - H(95)	120.3	C(95) - C(96) - C(91)	121.0(8)
C(95) - C(96) - H(96)	119.5	C(91) - C(96) - H(96)	119.5

Table S21. – continued from previous page