Intramolecular sensitization of americium luminescence in solution:

Shining light on short-lived forbidden 5f transitions

M. Sturzbecher-Hoehne,^a P. Yang,^{b*} A. D'Aléo^{c*} and R. J. Abergel^{a*}

^aChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. E-mail: rjabergel@lbl.gov; Fax: +1 510 486 5596; Tel: +1 510 486 5249.

^bTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

pyang@lanl.gov.

^cAix Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France.

daleo@cinam.univ-mrs.fr.

Supporting Information

Figure S1. Normalized steady-state emission spectra ($\lambda_{exc} = 345 \text{ nm}$) of Eu^{III} (blue) and Cm^{III} (red) complexes formed in situ with **2**, in 0.1 M HEPES buffer (pH 7.4, 25°C, [M^{III}] = [**2**] = 10 μ M).

Figure S2. Am(III) luminescence lifetime determination as a function of %H₂O content in D₂O:H₂O mixtures for [Am^{III}(1)]⁻ (10 μ M in 0.1 M HEPES, pH 7.4, 25°C). **Inset:** Luminescence decay of [Am^{III}(1)]⁻ (blue) in H₂O with the fitted curve (red) and its residual.

Figure S3. Metal competition batch titration of $[Am^{III}(1)]^-$ with Eu^{III}. Changes in normalized luminescence intensity ($\lambda_{exc} = 325 \text{ nm}$) upon addition of Eu over two emission windows, $\lambda_{em1} = 595-620 \text{ nm}$ and $\lambda_{em2} = 695-710 \text{ nm}$, corresponding to the Eu^{III} ${}^5D_0 \rightarrow {}^7F_2$ and Am^{III} ${}^5D_1 \rightarrow {}^7F_1$ transitions, respectively.

	Eu ^m	Cm ^m	
λ_{\max} (nm)	341	342	
$\varepsilon_{\rm max} ({\rm M}^{-1} {\rm cm}^{-1})$	13,360	14,140	
$\lambda_{\rm exc}$ (nm)	345	345	
$\Phi_{\rm tot} \left({\rm H_2O}\right)^b$	2.0×10^{-3}	4.0×10^{-1}	
$ au_{ m obs} \left(\mu s\right)^{b}$	272	139	
q	3.4^{c}	4.2^{a}	

^{*a*}All values reported are the results of at least three independent experiments performed in aqueous buffered solutions (0.1 M HEPES, pH 7.4); ^{*b*}Uncertainties determined from the standard deviation between three independent measurements are within 10% of the given value; ^{*c*}Using equation from T. Kimura, R. Nagaishi, Y. Kato, and Z. Yoshida, J. Alloys Compd., 2001, **323-324**, 164-168; ^{*d*}Using equation from T. Kimura and G. R. Choppin, J. Alloys Compd., 1994, **213-214**, 313-317.

	Table S2 Deconvolution of the normalized Arr	$^{III} ^{5}D_{1} \rightarrow F_{1}$ emission	peak for the three ligand	.s. ^a
--	--	---	---------------------------	------------------

1		2		3	
peak max (nm)	peak area (%)	peak max (nm)	peak area (%)	peak max (nm)	peak area (%)
689.5	18.3	688.9	21.8	687.9	18.6
698.3	38.9	693.2	29.7	694.7	32.2
702.7	22.7	698.7	23.2	699.4	18.7
706.5	20.1	704.5	25.4	704.6	30.6

^{*a*}Deconvolution performed with four Lorentzian functions, best fitting the participation of four transitions between two ${}^{5}D_{1}$ (Γ_{2} , Γ_{5}) emitting and two ${}^{7}F_{1}$ (Γ_{2} , Γ_{5}) accepting levels.

Quantum Yield Determination. Quantum yields were determined by the optically dilute method using eq. **S1**, where *A* is the absorbance at the excitation wavelength, *I* is the intensity of the excitation light at the same wavelength, *n* is the refractive index and *D* is the integrated luminescence intensity. The subscripts 'x' and 'r' refer to the sample and reference respectively.

$$\frac{\Phi_x}{\Phi_r} = \frac{A_r(\lambda_r)}{A_x(\lambda_x)} \frac{I(\lambda_r)}{I(\lambda_x)} \frac{n_x^2}{n_r^2} \frac{D_x}{D_r}$$
(S1)

For quantum yield calculations, excitation wavelengths of 325 nm (for ligand 1) or 345 nm (for ligands 2 and 3) were utilized for both the reference and sample, hence the $I(\lambda_r)/I(\lambda_x)$ term is removed. Similarly, the refractive indices term, n_x^2/n_r^2 , was taken to be identical for the aqueous reference and sample solutions. Hence, a plot of integrated emission intensity (i.e. D_r) versus absorbance at 325 nm or 345 nm (i.e. $A_r(\lambda_r)$) yields a linear plot with a slope which can be equated to the reference quantum yield Φr . Quinine sulfate in 0.5 M (1.0 N) sulfuric acid was used as the reference ($\Phi_r = 0.546$). By analogy, for the sample, a plot of integrated emission intensity (i.e. D_x) versus absorbance at 325 nm (for ligand 1) or 345 nm (for ligands 2 and 3) (i.e. $A_x(\lambda_x)$) yields a linear plot and Φx can then be evaluated. The values reported in the manuscript are the average of three independent measurements.

Triplet Stat Energy Determination. The Gd(III) complexes of **2** and **3** were prepared *in situ*, to determine the ligand centered triplet excited state energies. Because the Gd³⁺ ion exhibits a size and atomic weight similar to Eu³⁺ but lacks an appropriately positioned electronic acceptor level, the phosphorescence of the ligand can be observed by luminescence measurements in a solid matrix (1:3 (v/v) MeOH:EtOH) at 77 K. Upon cooling to 77 K, the Gd spectra of **2** and **3** revealed intense unstructured emission bands from 450 to 600 nm, assigned to phosphorescence from the ligands T₁ excited states. The lowest T₁ state energies were estimated by spectral deconvolution of the 77 K luminescence signal into several overlapping Gaussian functions.