Supporting Information

Isopentatungstate-supported metal carbonyl derivative: synthesis, characterization, and catalytic for alkene epoxidation

Jie Li, Jipeng Guo, Jiage Jia, Pengtao Ma, Dongdi Zhang□, Jingping Wang and Jingyang Niu□

Henan Key Laboratory of Polyoxometalate Chemistry,
Institute of Molecular and Crystal Engineering,
College of Chemistry and Chemical Engineering,
Henan University, Kaifeng 475004, Henan, China,
E-mail: ddzhang@henu.edu.cn, jyniu@henu.edu.cn; Fax: (+86)371-23886876.

CONTENTS

Section 1. Summary of POM-based metal carbonyl compounds

Section 2. The XRPD patterns

Section 3. Crystallographic data of 1

Section 4. The IR spectra of 1 and Re(CO)₅Cl

Section 5. Thermogravimetric analyses of 1

Section 6. The UV-vis spectra of 1

Section 7. Bond valence sum calculations of O

Section 8. Structural figure

Section 9 Catalytic properties

Section 1. Summary of POM-based metal carbonyl compounds

Figure S1. Summary of POMs-based metal carbonyl derivatives. Colour code: heteropolyoxotungstates, red; isopolyoxotungstates, orange; heteropolyoxomolybdates, blue; isopolyoxomolybdates, green; isopolyoxoniobates/isopolyoxotantalates, purple; mix-addendum type, yellow; others, light blue.

Section 2. The XRPD patterns

Figure S2. The XPRD patterns of 1

Section 3. Crystallographic data of 1

Table S1. Crystal data and structure refinement for 1

Empirical formula	$C_{24}H_{50}N_3O_{38}Re_4W_5K$
Formula weight	2691.80
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
space group	P2(1)/c
a/[Å]	13.8745(8)
b/[Å]	19.1737(11)
c/[Å]	22.0448(13)
β[°]	105.3700(10)
Z	4
Volume/[Å ³]	5654.7(6)
Calculated density/[g·cm ⁻³]	3.159
μ/[mm ⁻¹]	18.820
F(000)	4824

Crystal size	0.41 x 0.18 x 0.15 mm	
Theta range for data collection	1.86 to 25.00°	
Limiting indices	-16<=h<=16, -22<=k<=16, -	
	26<=l<=26	
Reflections collected	28713	
Independent reflections	9951 [R(int) = 0.0489]	
Completeness to theta $= 25.00$	99.9 %	
Data / restraints / parameters	9951 / 6 / 676	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2 σ (I)]	R1 = 0.0328, $wR2 = 0.0715$	
R indices (all data)	R1 = 0.0444, wR2 = 0.0764	
Largest diff. peak and hole/[$e \cdot A^{-3}$]	1.313, -1.799	

Figure S3. The IR spectrum of compound 1

Figure S4. The IR spectrum of Re(CO)₅Cl

Figure S5. The Thermogravimetric analysis curve of 1

Section 6. The UV-vis spectrum of 1

Figure S6. The UV–vis spectrum of 1

Section 7. Bond valence sum calculations of O

Sond valence sum parameters for O atoms on POM fragments in I				
Bond	Bond length	Bond Valence	Valence Sum	
O(1)-C(1)	1.157	0.233	$\Sigma(O1) = 1.877$	
O(2)-C(2)	1.164	0.226	$\Sigma(O2) = 1.842$	
O(3)-C(3)	1.156	0.234	$\Sigma(O3) = 1.882$	
O(4)-C(4)	1.154	0.236	$\Sigma(O4) = 1.892$	
O(5)-C(5)	1.142	0.248	$\Sigma(O5) = 1.954$	
O(6)-C(6)	1.142	0.248	$\Sigma(O6) = 1.954$	
O(7)-C(7)	1.143	0.247	$\Sigma(O7) = 1.949$	
O(8)-C(8)	1.155	0.235	$\Sigma(O8) = 1.887$	
O(9)-C(9)	1.159	0.231	$\Sigma(O9) = 1.867$	
O(10)-C(10)	1.142	0.248	$\Sigma(O10) = 1.955$	
O(11)-C(11)	1.163	0.227	$\Sigma(O11) = 1.847$	
O(12)-C(12)	1.148	0.242	$\Sigma(O12) = 1.923$	
O(13)-Re(4)	2.14	-0.17		
O(13)-W(1)	1.993	-0.076	$\Sigma(O13) = 2.097$	
O(13)-W(2)	2.076	-0.159		
O(14)-W(4)	2.083	-0.166	$\Sigma(O14) = 1.843$	
O(14)-W(1)	1.848	0.069		
O(15)-W(1)	1.722	0.195	$\Sigma(O15) = 1.694$	
O(16)-W(3)	2.079	-0.162	$\Sigma(016) = 1.021$	
O(16)-W(1)	1.824	0.093	$\Sigma(016) = 1.931$	
O(17)-Re(4)	2.179	-0.209		
O(17)-W(5)	2.055	-0.138	$\Sigma(O17) = 2.056$	
O(17)-W(1)	2	-0.083		
O(18)-W(5)	2.336	-0.419		
O(18)-W(4)	2.326	-0.409	Σ(O18) =1.593	
O(18)-W(3)	2.308	-0.391		
O(18)-W(2)	2.37	-0.453		

Table S2 Bond valence sum parameters for O atoms on POM fragments in 1

O(18)-W(1)	2.365	-0.448		
O(19)-W(2)	1.693	0.224	$\Sigma(O19) = 1.832$	
O(20)-Re(3)	2.133	-0.163	$\Sigma(O20) = 2.080$	
O(20)-W(2)	1.783	0.134		
O(21)-W(4)	1.938	-0.021	$\Sigma(O21) = 2.053$	
O(21)-W(2)	1.879	0.038		
O(22)-W(5)	2.029	-0.112		
O(22)-W(2)	2.03	-0.113	$\Sigma(O22) = 2.082$	
O(22)-Re(4)	2.155	-0.185		
O(23)-W(3)	1.707	0.21	$\Sigma(O23) = 1.764$	
O(24)-W(3)	1.948	-0.031	$\Sigma(O24) = 2.055$	
O(24)-W(5)	1.87	0.047		
O(25)-W(3)	1.919	-0.002	$\Sigma(O25) = 1.957$	
O(25)-W(4)	1.931	-0.014		
O(26)-W(3)	1.777	0.14	$\Sigma(O26) = 2.144$	
O(26)-Re(2)	2.11	-0.14		
O(27)-W(5)	1.727	0.19	$\Sigma(O27) = 1.671$	
O(28)-W(4)	1.713	0.204	$\Sigma(O28) = 1.735$	
O(29)-W(4)	1.777	0.14	$\Sigma(020) = 2.160$	
O(29)-Re(1)	2.102	-0.132	$\Sigma(O29) = 2.160$	
O(30)-Re(3)	2.117	-0.147	$\Sigma(O30) = 2.081$	
O(30)-W(5)	1.79	0.127		
O(31)-Re(3)	2.196	-0.226		
O(31)-Re(2)	2.201	-0.231	$\Sigma(O31) = 1.640$	
O(31)-Re(1)	2.184	-0.214		
O(32)-Re(2)	2.147	-0.177	$\Sigma(O32) = 1.251$	
O(32)-Re(1)	2.14	-0.17		

Section 8. Structural figure

Figure S7. View of the **1** along the *c*-axis. Colour code: W, green; K, yellow; Re, purple; C, gray; O, red; WO₆ octahedral, green.

Section 9 Catalytic properties

Procedures for Catalytic Oxidation.

A glass tube was charged with the catalyst (9.0 mg), substrate (1.0 mmol), 35% H₂O₂ (2.0 mmol), and acetonitrile (5.0 mL) as a typical procedure. The reaction system was maintained at a present temperature with vigorous stirring and the catalyst completely dissolves into the reaction medium. The reaction solution was periodically analyzed by gas chromatography.

Entry	Substrate	Catalyst.	Conv. (%) ^b	Sel. (%)
1		_	no reaction	
2		Re(CO) ₅ Cl	0.3	99
3		catalyst 1	98.9	99

Table S3. The catalytic activity of no catalyst and Re(CO)₅Cl compared with catalyst 1^a

^aReaction conditions: catalyst **1** (3.3 μ mol), Re(CO)₅Cl (13.2 μ mol), H₂O₂ (2mmol), CH₃CN (5 mL), Temperature (75 °C). ^bDetermined by GC analyses based on initial substrate.