Supporting Information

An efficient and sensitive fluorescent pH sensor based on amino functional

metal-organic frameworks in aqueous environment

Xiao-Yu Xu and Bing Yan*

Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China.

Fig. S1 Ball-and-stick view of two cages and free dimensions (nm) of the pentagonal and hexagonal windows. Amino groups in the ligand have been ignored.

Fig. S2 N_2 adsorption-desorption isotherm at 77 K of Al-MIL-101-NH₂ and Al-MIL-101. The BET surface area and N_2 sorption isotherms are a bit different from those in the previous reports.¹ The difference could be attributed to: i) the similar synthetic approach but may be different reaction vessel (which is not mentioned in references); ii) the interparticle voids as the small MOF particles stack together; iii) the trapped DMF molecules which may slow down the desorption kinetics due to free-NH₂ in the pore of MOFs.

Fig. S3 FTIR spectrum of Al-MIL-101-NH₂ and Al-MIL-101 (a) and FTIR spectrum of Al-MIL-101-NH₂ in aqueous solution of pH = 4 and 7 (b).

Fig. S4 Thermogravimetric analysis of Al-MIL-101-NH₂ and Al-MIL-101 in N₂ at a heating rate of 5 K/min.

Fig. S5 Excitation and emission spectra of Al-MIL-101. The inset is the corresponding CIE chromaticity diagram.

Fig. S6 (a) PXRD patterns of Al-MIL-101-NH₂: (black line) as-synthesized; (red line) after treatment in H₂O for 48 h; (B) Stability of fluorescent intensity of Al-MIL-101-NH₂ after 6 days' storage in H₂O.

Fig. S7 Powder X-ray diffraction (PXRD) profiles for orginal and Al-MIL-101-NH2 samples soaked in aqueous solutions with pH values of 4, 6, 8 and 9.

Fig. S8 (a) Suspension-state PL spectra and (b) the relative intensity of 340 nm for Al-MIL-101 dispersed in aqueous solution of different pH when excited at 311 nm.

Fig. S9 Dots showed fluorescence emission at 451 nm of Al-MIL-101-NH₂ at different pH.

Fig. S10 (a) PXRD patterns of Al-MIL-101-NH₂ (black line), Fe_3O_4 (red line) and Fe_3O_4 @ Al-MIL-101-NH₂ (green line). SEM images of Fe_3O_4 (b) and Fe_3O_4 @Al-MIL-101-NH₂ (c).

Table S1 EDX element analysis of AI-MIL-101-NH	1 EDX element analysis of Al-MIL-1	01-NH ₂
--	------------------------------------	--------------------

Materials	Element	Weight%	Atomic%
Al-MIL-101-NH ₂	С	45.62	53.48
	0	10.30	10.34
	Ν	36.50	32.20
	Al	7.59	15.93

Table S2 The relative standard deviation (RSD) for six repetitive measurements of Al-MIL-101-NH₂ emission intensity in different pH.

рН	Numbers of assay	RSD(%)
4	6	2.32
5	6	1.89
б	6	1.96
7	б	2.01
7.7	б	1.76

Table S3 Chemical composition of PBS solution (g/L)

	Components	Contents (g/L)
Inorganic Salts	$CaCl_2$	
	KCl	
	KH ₂ PO ₄	0.144
	MgCl ₂ 6H ₂ O	
	NaCl	9.00
	Na ₂ HPO ₄	0.795
	Na ₂ HPO ₄ 7H ₂ O	
Organic Buffers	Tris Ultrapure	